当前位置: 首页 > news >正文

极简版Java敏感词检测SDK

敏感词工具

sensitive-word 基于 DFA 算法实现的高性能敏感词工具,开源在GitHub:https://github.com/houbb/sensitive-word。用于敏感词/违禁词/违法词/脏词等的识别和阻拦,是基于 DFA 算法实现的高性能 java 敏感词过滤工具框架。

使用场景:但凡是允许用户能将内容发布到网上的,任何地方理论上都应该要有一次内容审核,审核目的只要是否有违规违禁词等。之前开发过一款小程序,小程序的内容也有严格内容审核机制,当时采用的是小程序的API做的内容审核。而这款敏感词检测sdk,更加适合自己做内容平台开发等场景。

Maven引入

<dependency><groupId>com.github.houbb</groupId><artifactId>sensitive-word</artifactId><version>0.21.0</version>
</dependency>

快速使用

直接判断是否包含敏感词

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(SensitiveWordHelper.contains(text));

核心方法

在这里插入图片描述

返回第一个敏感词

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("五星红旗", word);

返回所有敏感词

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList.toString());

默认的替换策略

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String result = SensitiveWordHelper.replace(text);
Assert.assertEquals("****迎风飘扬,***的画像屹立在***前。", result);

指定替换的内容

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String result = SensitiveWordHelper.replace(text, '0');
Assert.assertEquals("0000迎风飘扬,000的画像屹立在000前。", result);

高级用法

自定义替换策略

场景说明:不同的敏感词有不同的替换结果。比如【游戏】替换为【电子竞技】,【失业】替换为【灵活就业】。

/*** 自定替换策略* @since 0.2.0*/
@Test
public void defineReplaceTest() {final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";ISensitiveWordReplace replace = new MySensitiveWordReplace();String result = SensitiveWordHelper.replace(text, replace);Assert.assertEquals("国家旗帜迎风飘扬,教员的画像屹立在***前。", result);
}public class MyWordReplace implements IWordReplace {@Overridepublic void replace(StringBuilder stringBuilder, final char[] rawChars, IWordResult wordResult, IWordContext wordContext) {String sensitiveWord = InnerWordCharUtils.getString(rawChars, wordResult);// 自定义不同的敏感词替换策略,可以从数据库等地方读取if("五星红旗".equals(sensitiveWord)) {stringBuilder.append("国家旗帜");} else if("毛主席".equals(sensitiveWord)) {stringBuilder.append("教员");} else {// 其他默认使用 * 代替int wordLength = wordResult.endIndex() - wordResult.startIndex();for(int i = 0; i < wordLength; i++) {stringBuilder.append('*');}}}}

使用实例

场景1:基本使用

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList.toString());
List<String> wordList2 = SensitiveWordHelper.findAll(text, WordResultHandlers.word());
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList2.toString());List<IWordResult> wordList3 = SensitiveWordHelper.findAll(text, WordResultHandlers.raw());
Assert.assertEquals("[WordResult{startIndex=0, endIndex=4}, WordResult{startIndex=9, endIndex=12}, WordResult{startIndex=18, endIndex=21}]", wordList3.toString());

场景2: wordTags例子

在 dict_tag_test.txt 文件中指定对应词的标签信息。

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";// 默认敏感词标签为空
List<WordTagsDto> wordList1 = SensitiveWordHelper.findAll(text, WordResultHandlers.wordTags());
Assert.assertEquals("[WordTagsDto{word='五星红旗', tags=[]}, WordTagsDto{word='毛主席', tags=[]}, WordTagsDto{word='天安门', tags=[]}]", wordList1.toString());List<WordTagsDto> wordList2 = SensitiveWordBs.newInstance().wordTag(WordTags.file("dict_tag_test.txt")).init().findAll(text, WordResultHandlers.wordTags());
Assert.assertEquals("[WordTagsDto{word='五星红旗', tags=[政治, 国家]}, WordTagsDto{word='毛主席', tags=[政治, 伟人, 国家]}, WordTagsDto{word='天安门', tags=[政治, 国家, 地址]}]", wordList2.toString());

其他特性

忽略大小写

final String text = "fuCK the bad words.";String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("fuCK", word);

忽略半角圆角

final String text = "fuck the bad words.";String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("fuck", word);

忽略数字的写法

这里实现了数字常见形式的转换。

final String text = "这个是我的微信:9⓿二肆⁹₈③⑸⒋➃㈤㊄";List<String> wordList = SensitiveWordBs.newInstance().enableNumCheck(true).init().findAll(text);
Assert.assertEquals("[9⓿二肆⁹₈③⑸⒋➃㈤㊄]", wordList.toString());

忽略繁简体

final String text = "我爱我的祖国和五星紅旗。";List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星紅旗]", wordList.toString());

忽略英文的书写格式

final String text = "Ⓕⓤc⒦ the bad words";List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[Ⓕⓤc⒦]", wordList.toString());

忽略重复词

final String text = "ⒻⒻⒻfⓤuⓤ⒰cⓒ⒦ the bad words";List<String> wordList = SensitiveWordBs.newInstance().ignoreRepeat(true).init().findAll(text);
Assert.assertEquals("[ⒻⒻⒻfⓤuⓤ⒰cⓒ⒦]", wordList.toString());

更多策略检测

邮箱检测

邮箱等个人信息,默认未启用。

final String text = "楼主好人,邮箱 sensitiveword@xx.com";
List<String> wordList = SensitiveWordBs.newInstance().enableEmailCheck(true).init().findAll(text);
Assert.assertEquals("[sensitiveword@xx.com]", wordList.toString());

连续数字检测

一般用于过滤手机号/QQ等广告信息,默认未启用。
V0.2.1 之后,支持通过 numCheckLen(长度) 自定义检测的长度。

final String text = "你懂得:12345678";// 默认检测 8 位
List<String> wordList = SensitiveWordBs.newInstance()
.enableNumCheck(true)
.init().findAll(text);
Assert.assertEquals("[12345678]", wordList.toString());// 指定数字的长度,避免误杀
List<String> wordList2 = SensitiveWordBs.newInstance()
.enableNumCheck(true)
.numCheckLen(9)
.init()
.findAll(text);
Assert.assertEquals("[]", wordList2.toString());

网址检测

用于过滤常见的网址信息,默认未启用。

final String text = "点击链接 https://www.baidu.com 查看答案";
final SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance().enableUrlCheck(true).init();
List<String> wordList = sensitiveWordBs.findAll(text);
Assert.assertEquals("[https://www.baidu.com]", wordList.toString());
Assert.assertEquals("点击链接 ********************* 查看答案", sensitiveWordBs.replace(text));

IPV4 检测

避免用户通过 ip 绕过网址检测等,默认未启用。

final String text = "个人网站,如果网址打不开可以访问 127.0.0.1。";
final SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance().enableIpv4Check(true).init();
List<String> wordList = sensitiveWordBs.findAll(text);
Assert.assertEquals("[127.0.0.1]", wordList.toString());

引导类特性配置

为了让使用更加优雅,统一使用 fluent-api 的方式定义。

用户可以使用 SensitiveWordBs 进行如下定义:
注意:配置后,要使用我们新定义的 SensitiveWordBs 的对象,而不是以前的工具方法。工具方法配置都是默认的。

SensitiveWordBs wordBs = SensitiveWordBs.newInstance().ignoreCase(true).ignoreWidth(true).ignoreNumStyle(true).ignoreChineseStyle(true).ignoreEnglishStyle(true).ignoreRepeat(false).enableNumCheck(false).enableEmailCheck(false).enableUrlCheck(false).enableIpv4Check(false).enableWordCheck(true).numCheckLen(8).wordTag(WordTags.none()).charIgnore(SensitiveWordCharIgnores.defaults()).wordResultCondition(WordResultConditions.alwaysTrue()).init();final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(wordBs.contains(text));

配置说明:
在这里插入图片描述

总结

更多内容,比如如何自定因黑白名单以及敏感词标签设置等,参考官方文档:https://github.com/houbb/sensitive-word

相关文章:

极简版Java敏感词检测SDK

敏感词工具 sensitive-word 基于 DFA 算法实现的高性能敏感词工具&#xff0c;开源在GitHub&#xff1a;https://github.com/houbb/sensitive-word。用于敏感词/违禁词/违法词/脏词等的识别和阻拦&#xff0c;是基于 DFA 算法实现的高性能 java 敏感词过滤工具框架。 使用场景…...

H3C路由器交换机操作系统介绍

路由器 路由器的作用 连接具有不同介质的链路连接网络或子网&#xff0c;隔离广播对数据报文执行寻路和转发交换和维护路由信息 H3C 路由器系列 CR系列核心路由器SR系列高端路由器MSR系列路由器ER系列路由器 交换机 交换机的作用 连接多个以太网物理段&#xff0c;隔离冲…...

【项目案例】-音乐播放器-Android前端实现-Java后端实现

精品专题&#xff1a; 01.C语言从不挂科到高绩点 https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482 02. SpringBoot详细教程 https://blog.csdn.ne…...

EasyX图形库的安装

前言 EasyX是一个图形库&#xff0c;可以用来做一些c/c小游戏&#xff0c;帮助学习。 一、进入EasyX官网 https://easyx.cn/ 二、点击下载EasyX 三、下载好后以管理员身份运行它 四、点击下一步 五、然后它会自动检测你的编辑器&#xff0c;用哪个就在哪个点安装 六、安装成功…...

数据结构 - 队列

队列也是一种操作受限的线性数据结构&#xff0c;与栈很相似。 01定义 栈的操作受限表现为只允许在队列的一端进行元素插入操作&#xff0c;在队列的另一端只允许删除操作。这一特性可以总结为先进先出&#xff08;First In First Out&#xff0c;简称FIFO&#xff09;。这意味…...

基于springboot美食推荐商城的设计与实现

基于springboot美食推荐商城的设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;idea 源码获取&#xff1a;https:…...

React开发一个WebSocket

export default class SocketService {static instance null;static get Instance() {if (!this.instance) {this.instance new SocketService();}return this.instance;}// 和服务端连接的socket对象ws null;// 存储回调函数callBackMapping {};// 标识是否连接成功connec…...

Oracle DECODE 丢失时间精度的原因与解决方案

在Oracle数据库中&#xff0c;DECODE 函数是一个非常实用的条件处理函数&#xff0c;通常用于替代简单的 CASE WHEN 语句。它根据给定的值列表进行匹配&#xff0c;如果匹配成功则返回相应的值。如果不匹配&#xff0c;返回一个默认值。 问题描述 SELECT DECODE(-21, -1, NU…...

如何用示波器检测次级点火系统(一)

写在最前面&#xff1a; 单看标题可能会让你觉得这篇文章的主题是关于检测线圈&#xff0c;火花塞和火花塞插头电线。但我们指的是分析燃烧室内电子的行为。目标是看燃料混合物&#xff0c;阀座&#xff0c;压缩&#xff0c;积碳和其它影响这种特性的症状。最终目的是要学会分…...

基于SpringBoot+Vue+uniapp的涪陵区特色农产品交易系统的详细设计和实现(源码+lw+部署文档+讲解等)

详细视频演示 请联系我获取更详细的视频演示 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念&#xff0c;提供了一套默认的配置&#xff0c;让开发者可以更专注于业务逻辑而不…...

bmp怎么转换为jpg?快速批量将bmp转换为jpg

bmp怎么转换为jpg&#xff1f;在日常的数字生活中&#xff0c;我们时常会遇到各种格式的图片文件&#xff0c;它们各自拥有不同的特点和用途。最近&#xff0c;我遇到了一个有趣的小插曲&#xff1a;我从网络上下载了一张精美的BMP格式图片&#xff0c;打算用它作为一篇报告的背…...

centos8配置java环境变量jdk8u422-b05

1. 下载 JDK 8u422-b05 首先&#xff0c;确保已经下载了 JDK 8u422-b05 的二进制文件。如果还没有下载&#xff0c;你可以去 Oracle 官方网站或者其他可信的源下载 JDK 8u422。 2. 安装 JDK 将下载的 JDK 文件解压到 /usr/local/java 目录下&#xff1a; sudo mkdir /usr/l…...

基于SSM的校园拓展活动管理系统

文未可获取一份本项目的java源码和数据库参考。 1 选题背景 校园文化是精神的载体&#xff0c;是青年成长成才的沃土&#xff0c;是一种体现校园的硬件设施、精神风貌、制度体系、办学理念以及办学特色的综合文化。文明程度高、文化气息浓、活动种类多的校园文化不仅能焕发学校…...

Python随机森林算法详解与案例实现

目录 Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例&#xff1a;使用随机森林预测鸢尾花品种4.1 数据集介绍4.2 代码实现4.3 代码解释4.4 运行结果 5、回归案例&#xff1a;使用随机森林预测波士顿房价5.1 数据集介绍5.2 代码实…...

提示词高级阶段学习day2.1-在提示词编写中对{}的使用教程

首先在 prompt engineering 中&#xff0c;使用 {} 通常是为了标识占位符或变量&#xff0c; 这些占位符可以在实际生成内容时被动态替换。 通过这种方式&#xff0c;prompt 可以更加通用和灵活&#xff0c;适用于不同的输入数据场景。 以下是一个体系化、结构化的教程&…...

2024年,每一个大模型都躲不过容嬷嬷和紫薇

2024年还不上视频生成的大模型公司&#xff0c;还能上桌吃饭吗&#xff1f; 连最积极搞AI的李彦宏&#xff0c;在这件事上也迟疑了。 “百度不碰Sora类的视频生成方向。”李彦宏在近期的2024年Q3总监会上说道。原因在于&#xff0c;10年、20年都可能难以商业化应用。 从Open…...

SpringBoot之RedisTemplate基本配置

公司要求redis配置密码使用密文&#xff0c;但是程序使用的是spring默认的redisTemplate&#xff0c;那么就需要修改配置实现密码加解密。 先搞个加密工具类&#xff1a; public class SM2Encryptor {// 加密&#xff0c;使用公钥public static String encryptText(String pub…...

SparseRCNN 模型,用于目标检测任务

SparseRCNN 模型,用于目标检测任务 import logging import math from typing import Listimport numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn #项目完整代码下载链接:https://download.csdn.net/downl…...

【AIGC】第一性原理下的ChatGPT提示词Prompt设计:系统信息与用户信息的深度融合

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;第一性原理与ChatGPT提示词Prompt设计应用第一性原理于ChatGPT提示词Prompt设计系统信息和用户信息的融合实际应用结论 &#x1f4af;系统信息与用户信息的定义和重要性系…...

DeepSpeed性能调优与常见问题解决方案

1. 引言 什么是DeepSpeed&#xff1f; DeepSpeed是由微软开源的深度学习训练优化库&#xff0c;旨在帮助研究人员和工程师高效地训练大规模深度学习模型。基于PyTorch框架&#xff0c;DeepSpeed提供了一系列先进的技术&#xff0c;如ZeRO&#xff08;Zero Redundancy Optimiz…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...