【计网】理解TCP全连接队列与tcpdump抓包

理解TCP全连接队列与tcpdump抓包
- 1 TCP 全连接队列
- 1.1 重谈listen函数
- 1.2 初步理解全连接队列
- 1.3 深入理解全连接队列
- 2 tcpdump抓包
1 TCP 全连接队列
1.1 重谈listen函数
这里我们使用之前实现的tcp_echo_server的客户端与服务端。
我们来看listen
LISTEN(2) Linux Programmer's Manual
NAMElisten - listen for connections on a socketSYNOPSIS#include <sys/types.h> /* See NOTES */#include <sys/socket.h>int listen(int sockfd, int backlog);
这里的第二个参数我们之前设置的是一个const常量,但是这个到底代表什么含义呢?今天我们就来学习一下。
当我们启动客户端和服务端时,我们能够通过netstat -natp查找到建立的两个连接!

分别是客户端到服务端与服务端到客户端的连接!我们将服务端的的accept注释掉来看:
void Loop(){_isrunning = true;while (_isrunning){sleep(1);// accept接收sockfd// struct sockaddr_in client;// socklen_t len = sizeof(client);// int sockfd = ::accept(_listensockfd, (struct sockaddr *)&client, &len);// if (sockfd < 0)// {// LOG(WARNING, "accept error\n");// sleep(1);// continue;// }// InetAddr addr(client);// // 读取数据// LOG(INFO, "get a new link, client info : %s, sockfd is : %d\n", addr.AddrStr().c_str(), sockfd);// version 4 --- 线程池版本// task_t t = std::bind(&TcpServer::Service , this , sockfd , addr);// ThreadPool<task_t>::GetInstance()->Equeue(t);}
这里的服务端的启动后,就只进行了初始化套接字文件,不会进行accept!

我们看这个结果中,服务端和客户端还是建立起了连接!也就是说三次握手建立连接的过程与服务端是否进行accept无关!
当我们启动多个客户端进程之后,会发现有一些客户端进程的连接处于SYN_SENT状态,因为在服务器来不及进行accept的时候,底层的TCP listen sock 允许用户进行三次握手建立连接,但是不能建立太多!**这个数量就是backlog + 1!**而维护的成功连接在操作系统维护的数据结构就是全连接队列!
- listen函数中 backlog 的含义就是全连接队列中已经建立三次握手成功的个数!
这时我们就能够理解listen函数的两个参数了!
- int sockfd:sockfd是调用socket函数创建的套接字文件描述符。在调用listen之前,服务器应用程序必须先用socket函数创建一个套接字,一般使用bind函数将其绑定到一个本地地址和端口上。
- int backlog:backlog指定了在拒绝新的连接请求之前,系统应该为该套接字排队的最大连接数量。这个参数对防止过载很有用,它控制了未完成连接(SYN_RCVD状态)队列和已完成但还未被应用程序的accept调用接收的连接(ESTABLISHED状态)队列的总和的大小。
1.2 初步理解全连接队列
在操作系统中有应用层,传输层,网络层…在传输层中有一个接收队列accept_queue,建立连接时就进行三次握手。操作系统中用户访问的网站多种多样,并且会并发的运行,所以在操作系统内部一定是要通过数据结构来进行管理的!
- 连接本质就是操作系统内核中的一批数据结构!
在传输层中将这个数据结构放入队列中进行管理!应用层会调用accept获取连接,传输层就会返回给一个文件描述符供应用层使用,通过这个文件描述符,应用层就可以进行通信!这个队列就是全连接队列!
当应用层非常忙,来不及accept,那么全连接队列中会挤压连接,这个总数不能超过 backlog !这个并不代表服务端只能同时处理 backlog + 1个连接。全连接队列中的连接表示连接成功但来不及及时处理的连接!
- 全连接队列的本质就是生产消费模型,应用层从其中获取资源,传输层向其中放入资源!这个队列保证了在应用层较忙时无法获取连接时,可以先将一些连接维护起来,等待应用层调用,这样可以大大提升效率,提高连接吞吐量!增加服务端闲置率,减少给用户提供服务的效率和体验!
1.3 深入理解全连接队列
当服务器启动时,本质上是启动一个进程,那么就会有对应的task_struct。在这个结构体中都会有struct files_struct!其中包含文件描述符表struct file*fd_array[],每个元素都指向文件结构体struct file。
当创建网络套接字时,会创建一个struct socket结构体!在内核中时这样一个结构:

可以看到struct socket结构体内部有一个struct file结构体,但是未来我们是想通过文件描述符找到对应的套接字,然后进行读取数据。可是现在是struct socket结构体内部有一个struct file结构体,如果通过struct file结构体找到套接字呢?
在struct file结构体有一个指针void* private_data,这个指针指向struct socket结构体。这样两个结构体就联系起来了!
struct socket结构体是网络Socket的入口,其内部还包含一个const struct proto_ops结构体

这是一个方法集,集合了bind,connect…一系列的函数指针!
虽然我们struct socket结构体是内核中的套接字结构,但建立连接时真实的数据结构是tcp_sock结构体!

这是TCP套接字,其中包含了慢启动算法阈值,拥塞窗口大小,关联进程…一系列TCP协议中的对应字段!这个tcp_sock就是三次握手时候建立的结构体!其中的第一个成员struct inet_connection_sock是复制连接属性的!这里就包含连接的相关信息。全连接队列就在这个结构体中!

这里有超时重传的触发时间,TCP 连接的状态,握手失败重试次数,全连接队列…等数据。
全连接队列中时这样的结构:

struct inet_connection_sock中的第一个成员是struct inet_sock结构体,这是网络层的结构体。

struct inet_sock结构体其中包含了目的端口号,源端口号,目的 IP 地址和源 IP 地址等数据!更重要的是其中第一个成员是struct sock结构体,里面包含着报文的一些属性。这是整个tcp_sock中最底层的结构体,其中有两个字段:接收队列和发送队列
struct sk_buff_head sk_receive_queue;
struct sk_buff_head sk_write_queue;
这两个队列对于网络通信至关重要,因为它们直接参与了数据的接收和发送过程。今天不详细讲解。
我们再回过来看struct socket,其中有一个结构体指针struct sock* sk,这个指针可以指向tcp_sock中最底层的struct sock结构体,然后可以通过类型转换,最终读取到整个tcp_sock结构体!也就是说,这个指针指向了tcp_sock结构体!这是C风格的多态!
同样的创建UDP套接字时,udp_sock的第一个成员是struct inet_sock结构体(因为udp不需要连接所以没有包含连接属性结构体)。那么最终也是一个struct sock结构体,所以也可以通过C风格的多态实现!
通过基类struct socket,我们可以进行tcp和udp的通信,所以说他是网络socket的入口。

此时,我们看上图,可以直观的理解套接字的结构。每当创建网络套接字时就会创建一个socket文件。这个文件中会指向通用socket,这个通用socket可以指向TCP结构体或UDP结构体。
三次握手建立一个连接时,主要是创建tcp_sock或udp_sock, 两者的区别就是是否包含连接属性结构体!然后就将这个结构体放入到全连接队列中去!获取连接时,会通过sock_map_fd方法,将sock套接字转换为文件描述符!
2 tcpdump抓包
现在我们已经学习完毕了TCP协议的内容,熟悉了TCP报头结构中各个字段的意义,了解了三次握手和四次挥手的过程。接下来我们落实一下动手能力—进行抓包。
Linux系统中我们使用TCPDump :TCPDump 是一款强大的网络分析工具, 主要用于捕获和分析网络上传输的数据包。
tcpdump 通常已经预装在大多数 Linux 发行版中。 如果没有安装, 可以使用包管理器进行安装。 例如 Ubuntu系统可以使用以下命令安装:
sudo apt-get update
sudo apt-get install tcpdump
我们接下来在我们的云服务器进行一些抓包!

通过 sudo tcpdump -i any tcp命令,我们可以看到实时传输的数据包!
- -i any 指定捕获所有网络接口上的数据包, i 可以理解成为 interface “界面”的意思.
- tcp 指定捕获 TCP 协议的数据包。
我们如果想要捕获特定源或目的源IP地址的TCP报文呢?
使用 host 关键字可以指定源或目的 IP 地址。 例如, 要捕获源 IP 地址为192.168.1.100 的 TCP 报文, 可以使用以下命令:
$ sudo tcpdump src host 192.168.1.100 and tcp
要捕获目的 IP 地址为 192.168.1.200 的 TCP 报文, 可以使用以下命令:
$ sudo tcpdump dst host 192.168.1.200 and tcp
同时指定源和目的 IP 地址, 可以使用 and 关键字连接两个条件:
$ sudo tcpdump src host 192.168.1.100 and dst host 192.168.1.200 and tcp
我们如果想要捕获特定端口的TCP报文呢?
使用 port 关键字可以指定端口号。 例如, 要捕获端口号为 80 的 TCP 报文(通常是HTTP 请求), 可以使用以下命令:
$ sudo tcpdump port 80 and tcp
保存捕获的数据包到文件与读取
使用 -w 选项可以将捕获的数据包保存到文件中, 以便后续分析。 例如:
$ sudo tcpdump -i eth0 port 80 -w data.pcap
这将把捕获到的 HTTP 流量保存到名为 data.pcap 的文件中。
• 了解: pcap 后缀的文件通常与 PCAP(Packet Capture) 文件格式相关, 这是一种用于捕获网络数据包的文件格式,不能通过直接的cat读取!
使用 -r 选项可以从文件中读取数据包进行分析。 例如:
sudo tcpdump -r data.pcap
注意事项
- 使用 tcpdump 时, 请确保你有足够的权限来捕获网络接口上的数据包。 通常, 你需要以 root 用户身份运行 tcpdump。
- 使用 tcpdump 的时候, 有些主机名会被云服务器解释成为随机的主机名, 如果不想要, 就用-n 选项
- 主机观察三次握手的第三次握手, 不占序号
通过抓包我们可以验证三次握手和四次挥手的过程:

可以看到是第一次是SYN请求,第二次是SYN+ACK,第三次是ACK!通信过程中也把窗口大小确定了!

可以看到四次会受到过程!这里因为服务端和客户端同时断开连接,所以中间两次的挥手合并为一次通信,通过ACK序号和确认序号可以确定!!!我们可以通过sleep将服务端和客户端断开的时间错开

这样就是完整的四次挥手!
相关文章:
【计网】理解TCP全连接队列与tcpdump抓包
希望是火,失望是烟, 生活就是一边点火,一边冒烟。 理解TCP全连接队列与tcpdump抓包 1 TCP 全连接队列1.1 重谈listen函数1.2 初步理解全连接队列1.3 深入理解全连接队列 2 tcpdump抓包 1 TCP 全连接队列 1.1 重谈listen函数 这里我们使用…...
react18中实现简易增删改查useReducer搭配useContext的高级用法
useReducer和useContext前面有单独介绍过,上手不难,现在我们把这两个api结合起来使用,该怎么用?还是结合之前的简易增删改查的demo,熟悉vue的应该可以看出,useReducer类似于vuex,useContext类似…...
排序算法 —— 冒泡排序
目录 1.冒泡排序的思想 2.冒泡排序的实现 3.冒泡排序的总结 1.冒泡排序的思想 冒泡排序的思想就是在待排序序列中依次比较相邻两个元素,将大的or小的元素往后挪,每一趟都能保证将至少一个元素挪动到正确的位置,然后在待排序序列中重复该过…...
QT--文本框 QLineEdit、qtextedit
在Qt中,文本框(QLineEdit 或 QTextEdit)和标签(QLabel)是两种不同的部件(widget),它们的主要区别在于用途和功能: QLabel(标签) 用途࿱…...
Qt编写的modbus模拟器/支持网络和串口以及websocket/支持网络rtu
一、使用说明 1.1 设备模拟-Com 第一步,填写要模拟的设备地址,0表示自动处理,也就是收到什么地址就应答什么地址。第二步,填写对应的串口号和波特率。第三步,单击打开串口,成功后会变成关闭串口字样。单击…...
Standard_Matrix
文章目录 假设我们有一个样本矩阵X,每一列表示一个样本,现在我们要把样本转换成均值为0,方差为1的样本矩阵 X s t a n d a r d X − μ s \begin{equation} X_{standard}\frac{X-\mu}{s} \end{equation} XstandardsX−μpython 测试…...
js 通过input,怎么把选择的txt文件转为base64格式
文章目录 基本概念与作用说明Base64编码File对象相互转换的意义 从File对象到Base64编码从Base64编码到File对象批量转换File对象为Base64编码批量转换Base64编码为File对象功能使用思路思路一:动态生成预览思路二:异步处理与用户反馈思路三:…...
华为HCIP-openEuler认证详解
华为HCIP认证(Huawei Certified ICT Professional)是华为提供的专业级ICT技术认证,它旨在验证技术人员在特定技术领域的专业知识和实践能力。对于华为欧拉(openEuler)方向的HCIP认证,即HCIP-openEuler&…...
YOLO11改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附代码+小白必备】
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 在本文中,给大家带来的教程是…...
sentinel原理源码分析系列(四)-ContextEntry
启动和初始化完成后,调用者调用受保护资源,触发sentinel的机制,首先构建或获取Context和获取Entry,然后进入插槽链,决定调用是否通过,怎样通过 上图展示构建Context和获取Entry的类互动图 获取或构建Conte…...
Tcp协议讲解与守护进程
TCP协议:面向链接,面向字节流,可靠通信 创建tcp_server 1.创建套接字 域:依旧选择AF_INET 连接方式: 选择SOCK_STREAM 可靠的 2.bind 3.监听装置 client要通信,要先建立连接࿰…...
学习threejs,THREE.LineDashedMaterial 虚线材质,基于gosper高斯帕曲线生成雪花动画
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.LineDashedMaterial虚…...
LeetCode 热题100之哈希
1.两数之和 思路分析1(暴力法) 双重循环枚举满足num[i] nums[j] target的索引,刚开始不知道如何返回一对索引。后来知道可以直接通过return {i,j}返回索引;注意:j应该从i1处开始,避免使用两次相同的元素…...
软工——模块设计(爱啦爱啦)
过程设计的工具 一、程序流程图 程序流程图又称为程序框图,它是历史最悠久、使用最广泛的描述过程设计的方法。 它的主要优点是对控制流程的描绘很直观,便于初学者掌握。 程序流程图历史悠久,至今仍在广泛使用着。 程序流程图的主要缺点&a…...
Xmind一款极简思维导图和头脑风暴软件,支持PC和移动端,Xmind 2024.10.01101版本如何升级到Pro版?简单操作,最新可用!
文章目录 Xmind下载安装Xmind免费升级到Pro Xmind 是一款全功能的思维导图和头脑风暴软件,不限制节点和文件数,创新无限,界面纯净简洁无广告,支持PC和移动端,思维导图和大纲视图自由切换,可本地化文档存储&…...
自动化工具:Ansible
目录 一、运维自动化工具有哪些 二、Ansible 概述 1、Ansible 概念 2、Ansible 特点 3、Ansible 工作流程 三、安装部署Ansible 1、环境部署 2、管理节点安装 Ansible 3、查看Ansible相关文件 4、配置主机清单 5、免密管理 ssh-keygen 5.1、测试连通性 5.2、简洁输…...
我是类(最终版)
文章目录 再看构造函数类型转换static静态成员友元内部类匿名对象对象拷贝时的编译器优化 再看构造函数 本标题的目的是解决如下问题:当实现MyQueue时,我们不需要写默认构造函数,因为编译器会调用Stack的默认构造,但是࿰…...
详解ip route
ip route命令用于查看 Linux 系统中的路由表信息。 路由表包含的主要信息 目标网络地址(Destination) 显示网络的目标地址,可以是一个具体的网络地址(如192.168.1.0/24),也可以是一个默认网络(…...
OpenGL进阶系列04 - OpenGL 点精灵
一:概述 OpenGL 点精灵是一种渲染技术,用于在3D场景中渲染小的、可缩放的点。它们通常用于表示粒子效果、光源或其他小物体。点精灵会根据视图和投影矩阵自动调整大小,使其始终在屏幕上保持一致的视觉效果。实现时,点精灵通常通过使用纹理和适当的着色器来增加视觉效果。 …...
VSCode按ctrl与鼠标左键无法实现跳转的解决办法
vscode编译环境老是出问题,下面介绍两种解决方法 需要提前配置好代码编译需要的库以及编译器位置等等。 ctrlshiftp,输入 >C/C配置(JSON) 打开生成的c_cpp_properties.json {"configurations": [{"name": "Li…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
