当前位置: 首页 > news >正文

制程质量管理方案设计

质量管理系统框架——QMS

        涵盖产生产制造体系的全生命周期的质量管理过程

        与SAP、WMS、MES、OA等业务系统进行集成,整合各业务系统中的质量信息

        利用整合的全价值链质量信息,寻找质量改进点和质量创新点

系统功能模块管理 

        系统管理:用户管理、角色管理、权限管理、部门管理、职务管理、系统参数

        检验基础:检验类型、检验条件、检验方法、检验标准、检验项目、判断标准、原因缺陷、检验设备、检验组

        工艺基础:工序管理、设备管理、物料管理

        检验管理:检验任务、中控台

        报表管理:检验报表、spc等

        计划管理(拓展):检验计划配置

生命周期管理

        1、初始阶段需完成基础模块如OA与QMS用户组织架构的打通实现

        2、完成生产制造系统MES与QMS的对接,实现检验基础如工序、物料、设备的传输,继而实现工序与对应检验项目,物料与工序的关系绑定

        3、根据生产报工推送检验任务,进而展开检验单的创建与检验操作

        4、检验完成反推生产系统(或SAP)进行入库管理

        5、检验数据分析及工艺改进

相关文章:

制程质量管理方案设计

质量管理系统框架——QMS 涵盖产生产制造体系的全生命周期的质量管理过程 与SAP、WMS、MES、OA等业务系统进行集成,整合各业务系统中的质量信息 利用整合的全价值链质量信息,寻找质量改进点和质量创新点 系统功能模块管理 系统管理:用户管理…...

uniapp移动端优惠券! 附源码!!!!

本文为常见的移动端uniapp优惠券,共有6种优惠券样式(参考了常见的优惠券),文本内容仅为示例,您可在此基础上调整为你想要的文本 预览效果 通过模拟数据,实现点击使用优惠券让其变为灰色的效果(模…...

【分布式技术】中间件-zookeeper安装配置

文章目录 安装部署1. 安装ZooKeeper2. 配置ZooKeeper3. 启动ZooKeeper服务器4. 使用ZooKeeper命令行客户端5. 使用ZooKeeper的四个基本操作6. ZooKeeper集群模式7. 安全和权限8. 监控和日志 相关文献 安装部署 在Linux环境中操作ZooKeeper通常涉及以下几个方面: 1…...

高等数学 7.6高阶线性微分方程

文章目录 一、线性微分方程的解的结构*二、常数变易法 方程 d 2 y d x 2 P ( x ) d y d x Q ( x ) f ( x ) (1) \cfrac{\mathrm{d}^2 y}{\mathrm{d}x^2} P(x) \cfrac{\mathrm{d}y}{\mathrm{d}x} Q(x) f(x) \tag{1} dx2d2y​P(x)dxdy​Q(x)f(x)(1) 叫做二阶线性微分方程。…...

LSP的建立

MPLS需要为报文事先分配好标签,建立一条LSP,才能进行报文转发。LSP分为静态LSP和动态LSP两种。 静态LSP的建立 静态LSP是用户通过手工为各个转发等价类分配标签而建立的。由于静态LSP各节点上不能相互感知到整个LSP的情况,因此静态LSP是一个…...

huggingface的数据集下载(linux下clone)

1. 安装lfs sudo apt-get install git-lfs 或者 apt-get install git-lfs 2. git lfs install git lfs install 3. git clone dataset包 第2,3步骤的截图如下:...

Java使用dom4j生成kml(xml)文件遇到No such namespace prefix: xxx is in scope on:问题解决

介绍addAttribute和addNamepsace: addAttribute 方法 addAttribute 方法用于给XML元素添加属性。属性(Attributes)是元素的修饰符,提供了关于元素的额外信息,并且位于元素的开始标签中。属性通常用于指定元素的行为或样式&#…...

深入探讨Java中的LongAdder:使用技巧与避坑指南

文章目录 一、什么是LongAdder?二、LongAdder的简单使用示例代码: 三、LongAdder的工作原理四、LongAdder的常见使用场景五、使用LongAdder时的注意事项(避坑指南)1. 不要滥用LongAdder2. sum()方法与精度问题3. 避免过度使用rese…...

【本科毕业设计】基于单片机的智能家居防火防盗报警系统

基于单片机的智能家居防火防盗报警系统 相关资料链接下载摘要Abstract第1章 绪论1.1课题的背景1.2 研究的目的和意义 第2章 系统总体方案设计2.1 设计要求2.2 方案选择和论证2.2.1 单片机的选择2.2.2 显示方案的选择 第3章 系统硬件设计3.1 整体方案设计3.1.1 系统概述3.1.2 系…...

C语言 动态数据结构的C语言实现单向链表-2

建立一个单向链表 在单向链表中查找节点---查找尾节点 在单向链表中查找节点 --- 查找第 n 个节点 向单向链表中插入一个节点 向单向链表的尾部插入一个节点 向单向链表中某节点后插入一个节点 向单向链表中插入一个节点 删除单向链表中的某一节点 链表 vs 数组 动态数据结构...

Github 2024-10-23C开源项目日报 Top10

根据Github Trendings的统计,今日(2024-10-23统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量C项目10PLpgSQL项目1Redis - 内存数据库和数据结构服务器 创建周期:5411 天开发语言:C协议类型:BSD 3-Clause “New” or “Revised” Licen…...

ubuntu20.04 opencv4.0 /usr/local/lib/libgflags.a(gflags.cc.o): relocation报错解决

在一个只有ubuntu20.04的docker环境中配置opencv4.0.0, 什么库都没有,都要重新安装, 其他的问题在网上都找到了解决方案,唯独这个问题比较棘手: [ 86%] Linking CXX executable …/…/bin/opencv_annotation /usr/bin/ld: /usr/lo…...

android openGL ES详解——混合

一、混合概念 混合是一种常用的技巧,通常可以用来实现半透明。但其实它也是十分灵活的,你可以通过不同的设置得到不同的混合结果,产生一些有趣或者奇怪的图象。混合是什么呢?混合就是把两种颜色混在一起。具体一点,就…...

计网--物理层

目录 物理层的任务 1、常见概念 2、信道极限容量 3、传输介质 (1)导引型传输介质 (2)非导引型传输介质 4、信道复用技术 (1)频分 / 时分 复用 (2)波分复用WDM (…...

算法的学习笔记—数组中的逆序对(牛客JZ51)

😀前言 在算法和数据结构领域,"逆序对"是一个经典问题。它在数组中两个数字之间定义,若前面的数字大于后面的数字,则这两个数字组成一个逆序对。我们要做的就是,给定一个数组,找出数组中所有的逆…...

Golang | Leetcode Golang题解之第498题对角线遍历

题目&#xff1a; 题解&#xff1a; func findDiagonalOrder(mat [][]int) []int {m, n : len(mat), len(mat[0])ans : make([]int, 0, m*n)for i : 0; i < mn-1; i {if i%2 1 {x : max(i-n1, 0)y : min(i, n-1)for x < m && y > 0 {ans append(ans, mat[x…...

什么是全局污染?怎么避免全局污染?

全局污染&#xff08;Global Pollution&#xff09;是指在编程过程中&#xff0c;过度使用全局变量或对象导致命名冲突、代码可维护性下降及潜在错误增加的问题。在 JavaScript 等动态语言中&#xff0c;尤其需要关注全局污染的风险。 全局污染的影响 1. 命名冲突 3. 意外修改…...

C# 串口通信教程

串口通信&#xff08;Serial Communication&#xff09;是一种用于设备之间数据传输的常见方法&#xff0c;通常用于与外部硬件设备&#xff08;如传感器、机器人、微控制器&#xff09;进行通信。在 C# 中&#xff0c;System.IO.Ports 命名空间提供了与串口设备交互的功能&…...

PHP编程基础

PHP&#xff08;Hypertext Preprocessor&#xff0c;超文本预处理器&#xff09;是一种广泛使用的开源服务器端脚本语言&#xff0c;主要用于网页开发&#xff0c;同时也可以进行命令行脚本编写。以下是PHP编程的基础知识&#xff1a; 1. PHP文件结构 PHP文件通常以 .php 为扩…...

TwinCAT3下位机配置EAP通讯传递与接收变量

添加EAP设备 DEVICE中右键选择添加新项&#xff0c;添加EAP&#xff08;EtherCAT Automation Protocal&#xff09;选择Network Variables类型&#xff0c;如下图。 设置网络适配器来激活EAP&#xff0c;在Adapter中选择search&#xff0c;选择网络适配器后确定&#xff0c;…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...