当前位置: 首页 > news >正文

【算法优化】混合策略改进的蝴蝶优化算法

摘要

蝴蝶优化算法 (Butterfly Optimization Algorithm, BOA) 是一种新兴的智能优化算法,其灵感来自蝴蝶的觅食行为。本文基于经典BOA,通过引入混合策略进行改进,从而提高其在全局寻优和局部搜索中的性能。实验结果表明,改进的蝴蝶优化算法(IBOA)在处理复杂多模态函数优化问题时表现出了更优的收敛性和解的精度。与原始算法相比,IBOA通过更快的收敛速度和更低的函数值,实现了更为有效的全局最优解搜索。

理论

蝴蝶优化算法的灵感来源于自然界蝴蝶的觅食行为,主要依赖于信息素与视觉传递的信息相互作用。BOA 的数学模型包含两个主要部分:蝴蝶的移动和其对气味信息的利用。其核心思想是基于蝴蝶信息素的动态变化与距离传播,在全局和局部范围内找到最优解。

改进策略:

  1. 混合全局搜索与局部搜索:在全局搜索阶段,IBOA 引入随机扰动和更新机制以避免陷入局部最优;在局部搜索阶段,采用局部优化方法提高搜索效率。

  2. 动态参数调整:为增强收敛精度,引入了动态调整机制,对迭代过程中参数进行自适应优化。

算法流程:

  1. 初始化蝴蝶种群,设定各蝴蝶的初始位置。

  2. 计算每只蝴蝶的气味浓度,确定其移动方向。

  3. 按照改进的混合策略进行全局搜索和局部搜索。

  4. 更新蝴蝶种群,并判断是否满足终止条件。

实验结果

为了验证改进的蝴蝶优化算法(IBOA)的有效性,本文在几个典型的多模态函数上进行实验,包括F2和F5测试函数。

1. F2测试函数:

  • 如图所示(图2),F2 是一个具有尖锐峰值和多个局部最优点的测试函数。

  • 收敛曲线(图1)表明,IBOA 在迭代初期迅速下降并找到较优解,最终的函数值比BOA显著低。

2. F5测试函数:

  • F5是一个具有大范围下降趋势的函数(图4)。

  • 从收敛曲线图(图3)中可以看出,IBOA相较于BOA,能够以更快的速度找到最优解,并在早期迭代时展现了显著的收敛优势。

通过多个测试函数的实验结果可以得出,IBOA在收敛速度和优化精度上均优于原始BOA。

部分代码

% 初始化参数
N = 30;  % 种群大小
Max_iter = 500;  % 最大迭代次数
lb = -100;  % 下边界
ub = 100;  % 上边界
dim = 30;  % 维度% 初始化蝴蝶种群
X = lb + (ub - lb) * rand(N, dim); 
Fbest = inf;% 定义气味浓度公式
for t = 1:Max_iter% 计算每个个体的适应度值for i = 1:Nfitness(i) = objective_function(X(i,:));end% 更新最优值[best, index] = min(fitness);if best < FbestFbest = best;Best_position = X(index, :);end% 更新蝴蝶位置for i = 1:N% 全局搜索和局部搜索的混合策略if rand < p% 全局搜索X(i,:) = X(i,:) + rand * (Best_position - X(i,:));else% 局部搜索X(i,:) = X(i,:) + rand * (X(i,:) - mean(X));endend
end% 输出最优值
disp(['最优值为: ', num2str(Fbest)]);

参考文献

  1. Yang XS. "Nature-inspired optimization algorithms." Elsevier, 2014.

  2. Du K.-L., Swamy M.N.S. "Search and optimization by metaheuristics." Springer, 2016.

  3. Karaboga D., Akay B. "A comparative study of Artificial Bee Colony algorithm." Applied Mathematics and Computation, 214(1), 2015, pp. 108-132.

  4. Gandomi AH, Alavi AH. "Krill herd: A new bio-inspired optimization algorithm." Communications in Nonlinear Science and Numerical Simulation, 17(12), 2012, pp. 4831-4845.

  5. Zhang X., Zhang Y., Wang S. "Improved Butterfly Optimization Algorithm for Complex Function Optimization Problems." Journal of Intelligent & Fuzzy Systems, 39(5), 2021, pp. 7601-7612.

(文章内容仅供参考,具体效果以图片为准)

相关文章:

【算法优化】混合策略改进的蝴蝶优化算法

摘要 蝴蝶优化算法 (Butterfly Optimization Algorithm, BOA) 是一种新兴的智能优化算法&#xff0c;其灵感来自蝴蝶的觅食行为。本文基于经典BOA&#xff0c;通过引入混合策略进行改进&#xff0c;从而提高其在全局寻优和局部搜索中的性能。实验结果表明&#xff0c;改进的蝴…...

什么是标准差?详解

文章目录 一、什么是标准差&#xff1f;二、公式三、举个例子&#x1f330;参考 一、什么是标准差&#xff1f; 在统计学中&#xff0c;标准差&#xff08;Standard Deviation&#xff09;是用于衡量变量值围绕其平均值变化程度的指标。低标准差表示这些值通常接近平均值&…...

C++20中头文件syncstream的使用

<syncstream>是C20中新增加的头文件&#xff0c;提供了对同步输出流的支持&#xff0c;即在多个线程中可安全地进行输出操作&#xff0c;此头文件是Input/Output库的一部分。包括&#xff1a; 1.std::basic_syncbuf&#xff1a;是std::basic_streambuf的包装器(wrapper)&…...

判断特定时间点开仓的函数(编程技巧)

如何使用最新的MQL4语言创建并应用一个判断当前是否可以开启或增加交易仓位的函数。通过详细讲解函数的代码实现、核心功能及其在实际交易策略中的调用方法。 函数代码 以下是一个用MQL4编写的函数&#xff0c;用于检测在特定时间点是否可以开仓或增仓。 extern int MagicNumb…...

如何新建一个React Native的项目

要新建一个 React Native 项目&#xff0c;你可以使用 React Native 官方推荐的工具 React Native CLI 或者 Expo。两者的区别在于&#xff1a;React Native CLI 提供更多对原生代码的访问权限&#xff0c;适合构建复杂的应用&#xff1b;而 Expo 是一个开发工具链&#xff0c;…...

学习--图像信噪比

目录 图像信噪比 图像信噪比 图像信噪比的计算公式&#xff1a; 其中&#xff0c; M M M和 N N N分别表示图像长度和宽度上的像素数。 f ( i , j ) f(i,j) f(i,j) 和 g ( i , j ) g(i,j) g(i,j)分别是原始图像和去噪后的图像在点 ( i , j ) (i,j) (i,j)处的像素值。 信噪…...

【2024CANN训练营第二季】使用华为云体验AscendC_Sample仓算子运行

环境介绍 NPU&#xff1a;Ascend910B2 环境准备 创建Notebook 华为云选择&#xff1a;【控制台】-【ModelArts】 ModelArts主页选择【开发生产】-【开发空间】-【Notebook】 页面右上角选择【创建Notebook】 选择资源 主要参数 规格&#xff1a;Ascend: 1*ascend-snt…...

使用 NumPy 和 Matplotlib 实现交互式数据可视化

使用 NumPy 和 Matplotlib 实现交互式数据可视化 在数据分析中&#xff0c;交互式可视化可以更好地帮助我们探索和理解数据。虽然 Matplotlib 是静态绘图库&#xff0c;但结合一些技巧和 Matplotlib 的交互功能&#xff08;widgets、event handlers&#xff09;&#xff0c;我…...

TCP 攻击为何在 DDoS 攻击中如此常见

分布式拒绝服务攻击&#xff08;Distributed Denial of Service, DDoS&#xff09;是一种常见的网络攻击手段&#xff0c;通过大量请求使目标服务器过载&#xff0c;导致合法用户无法访问服务。在众多 DDoS 攻击类型中&#xff0c;TCP 攻击尤为常见。本文将探讨 TCP 攻击在 DDo…...

未来汽车驾驶还会有趣吗?车辆动力学系统简史

未来汽车驾驶还会有趣吗&#xff1f;车辆动力学系统简史 本篇文章来源&#xff1a;Schmidt, F., Knig, L. (2020). Will driving still be fun in the future? Vehicle dynamics systems through the ages. In: Pfeffer, P. (eds) 10th International Munich Chassis Symposiu…...

LCD手机屏幕高精度贴合

LCD手机屏幕贴合&#xff0c;作为智能手机生产线上至关重要的一环&#xff0c;其质量直接关乎用户体验与产品竞争力。这一工艺不仅要求屏幕组件间的无缝对接&#xff0c;达到极致的视觉与触觉效果&#xff0c;还需确保在整个生产过程中&#xff0c;从材料准备到最终成品&#x…...

15_卸载操作

在之前我们就提到&#xff0c;首次渲染之后&#xff0c;后续如果再调用 render 函数时&#xff0c;传递的 vnode 为 null 则表示是卸载。 当时我们是直接通过执行 container.innerHTML ‘’ 来实现的&#xff0c;但是这样做会有以下几个问题&#xff0c;如下&#xff1a; 容…...

ONLYOFFICE 文档8.2版本已发布:PDF 协作编辑、改进界面、性能优化等更新

ONLYOFFICE 在线编辑器最新版本已经发布&#xff0c;其中包含30多个新功能和500多个错误修复。阅读本文了解所有更新。 关于 ONLYOFFICE 文档 ONLYOFFICE 是一个开源项目&#xff0c;专注于高级和安全的文档处理。坐拥全球超过 1500 万用户&#xff0c;ONLYOFFICE 是在线办公领…...

redis的string是怎么实现的

Redis 的 String 类型是最基本的数据类型&#xff0c;底层通过多种方式实现&#xff0c;能够存储字符、整数、浮点数等各种形式的值。String 数据结构的实现基于 Redis 的简单动态字符串&#xff08;SDS&#xff09;&#xff0c;同时在处理不同的数据类型时也进行了优化。 1. …...

基于STM32设计的智能婴儿床(华为云IOT)(244)

文章目录 一、前言1.1 项目介绍【1】开发背景【2】项目实现的功能【3】项目硬件模块组成【4】ESP8266工作模式配置1.2 设计思路【1】整体设计思路【2】整体构架【3】上位机开发思路1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献【4】摘要1.4 开发工具的选择【1…...

html+css+js实现Notification 通知

实现效果&#xff1a; 代码实现&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Notif…...

【Linux】拆分详解 - 常见指令和权限理解

文章目录 前言一、常用指令1. 基本查看与路径跳转1.1文件与目录1.2 ls 指令&#xff08;显示文件&#xff09;1.3 pwd &#xff08;查看当前目录&#xff09;1.4 clear &#xff08;清屏&#xff09;1.5 whoami &#xff08;查看用户名&#xff09;1.6 cd&#xff08;跳转路径&…...

UniHttp 框架,请求http接口

项目案例下载地址: https://download.csdn.net/download/jinhuding/89902024 1.快速开始 2.1引入依赖 <dependency><groupId>io.github.burukeyou</groupId><artifactId>uniapi-http...

C++20中头文件ranges的使用

<ranges>是C20中新增加的头文件&#xff0c;提供了一组与范围(ranges)相关的功能&#xff0c;此头文件是ranges库的一部分。包括&#xff1a; 1.concepts: (1).std::ranges::range:指定类型为range&#xff0c;即它提供开始迭代器和结束标记(it provides a begin iterato…...

设计一个html+css+js的注册页,对于注册信息进行合法性检测

综合使用HTML、JavaScript和CSS进行注册页面设计&#xff0c;实现以下若干功能&#xff1a; 注意整个页面的色调和美观使用FramesetTable布局&#xff08;div也可&#xff09;对用户ID和用户名、口令不符合条件及时判断对口令不一致进行及时判断&#xff08;34的及时判断&#…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...