当前位置: 首页 > news >正文

数据库、数据仓库、数据湖和数据中台有什么区别

很多企业在面对数据存储和管理时不知道如何选择合适的方式,数据库、数据仓库、数据湖和数据中台,这些方式都是什么?有什么样的区别?企业根据其业务类型该选择哪一种?本文就针对这些问题,来探讨下这些方式都有什么区别,企业该怎么选择合适的数据管理方式。

一、数据库

数据库是一种结构化数据存储技术,用于存储和管理有组织的数据。数据库通常使用关系型模型来组织数据,并使用SQL来查询和操作数据。数据库是用于处理事务性数据的最常见类型的存储,适用于需要高度结构化和规范化的应用场景,例如企业管理系统、电子商务平台等。

常见的数据库有

关系型数据库:MySQL、Oracle、SQL Server、PostgreSQL等

非关系型数据库:MongoDB(文档型数据库)、Redis、HBase(存储大规模结构化数据)

二、数据仓库

数据仓库是一种专门用于分析和报告大型结构化数据存储技术。与传统数据库不同,数据仓库通常包含历史记录和大量冗余信息,以便支持复杂的分析查询。它们通常是企业级解决方案,用于从各种源中采集和存储数据,以便进行分析和报告。通常使用数据仓库ETL工具将数据从多个源中提取并转换为通用格式,然后将其加载到数据仓库中,并使用OLAP工具进行多维分析。

数据仓库架构:数据源、ETL过程、数据存储、数据分析与报表、数据管理与监控

数据仓库建模:维度建模、范式建模

数据仓库主要用途:存储历史数据、支持决策分析、支持数据分析、支持数据备份和恢复

三、数据湖

数据湖是一种非结构化或半结构化大型数据存储技术,用于存储各种类型和格式的原始或未处理的数据。数据库、数据仓库和数据湖的区别之一在于,数据湖通常不需要预定义模式或架构,并且可以在需要时进行灵活地查询和分析。数据湖也可以从多个源中采集和存储数据,但它们通常不会在数据加载之前对其进行转换。由于其灵活性和可扩展性,数据湖适用于大规模数据分析和机器学习等应用场景。

四、数据中台

数据中台是一种企业级的数据管理和服务平台,它整合了企业内外部的各种数据资源,通过数据的采集、存储、处理、分析和服务等环节,为企业提供统一的数据管理和数据分析服务,帮助企业实现数据驱动的决策和业务创新。

数据中台的组成部分:数据采集层;数据存储层;数据处理层;数据分析层;数据服务层

数据中台的作用:数据整合;数据治理;数据分析和挖掘;数据服务;

数据中台与数据仓库的区别?

首先在定位上两者有不同:

数据中台的定位是:企业级的大数据平台,强调的是数据的整合共享和复用,旨在为企业提供统一的数据服务和数据分析能力,支持企业的数字化转型和业务创新

--目的:实现数据资产化,提升数据的价值和可用性,打破数据孤岛,促进业务与数据的深度融合,提高企业运营的效率和决策水平

数据仓库定位是:用于存储和管理企业的历史数据,为企业的决策支持提供数据基础。通常是面向特定主题的,如销售、财务等

--目的:为整合企业内部的多个数据元,提供一致、准确的数据,支持企业的报表生成、数据分析和数据挖掘

五、综合区别

总的来说,从基础能力上看:

1.数据平台:提供的是计算和存储能力

2.数据仓库:利用数据平台提供的计算和存储能力,在一套方法轮的指导下建设的一整套的数据表

3.数据中台:包含了数据平台和数据仓库的所有内容,将其打包,并且以更加整合以及更加产品化的方式对外提供服务和价值

4.数据湖:一个存储企业各种各样原始数据的大型仓库,包括结构化和非结构化数据,其中湖里的数据可供存取、处理、分析和传输

业务能力上看:

1.数据平台:为业务提供数据主要方式是提供数据集

2.数据仓库:相对具体的功能概念是存储和管理一个或多个主题数据的集合,为业务提供服务的方式主要是分析报表

3.数据中台:企业级的逻辑概念,体现企业数据产生价值的能力,为业务提供服务的主要方式是数据API

4.数据湖:数据仓库的数据来源

总的来说,数据中台距离业务更近,数据复用能力更强,能为业务提供速度更快的服务,数据中台在数据仓库和数据平台的基础上,将数据生产为一个个数据API服务,以更高效的方式提供给业务。数据中台可以建立在数据仓库和数据平台之上,是加速企业从数据到业务价值的过程的中间层

企业应该如何进行选择?

在当今的大数据时代,企业需要处理和分析越来越多的数据,以便更好地了解客户需求、优化业务流程、提高生产效率等。为了实现这些目标,企业需要选择适合自己的数据存储技术。在选择之前,企业需要考虑以下几个因素:

1. 数据类型和来源。

如果大部分数据都是结构化的,并且来自于内部系统或外部供应商,使用数据仓库更为合适。通常使用数据仓库ETL工具将多个源中的异构数据集成到一个统一的存储中进行多维分析。如果企业处理的数据类型和来源多样化,包括结构化、半结构化和非结构化数据,并且需要进行实时分析,则使用数据湖可能更为合适。数据湖可以存储各种类型和格式的原始或未处理的数据,并且可以在需要时进行灵活地查询和分析。

2. 数据量和增长速度。

如果企业处理的数据量较小,增长速度较慢,则使用传统数据库可能足够。但是,如果企业处理的数据量非常大,并且增长速度很快,则使用数据仓库或者数据湖可能更为合适。

3. 分析需求。

如果企业需要进行复杂的多维分析,并且需要频繁地查询和报告,则使用数据仓库可能更为合适。但是,如果企业需要进行实时分析,并且需要快速地探索新型分析模型,则使用数据湖可能更为合适。

4. 技术能力和资源。

如果企业拥有足够的技术能力和资源,并且能够承担高昂的维护成本,则使用数据仓库或者数据湖可能更为合适。

了解更多数据仓库与数据集成关干货内容请关注>>>FineDataLink官网

免费试用、获取更多信息,点击了解更多>>>体验FDL功能

相关文章:

数据库、数据仓库、数据湖和数据中台有什么区别

很多企业在面对数据存储和管理时不知道如何选择合适的方式,数据库、数据仓库、数据湖和数据中台,这些方式都是什么?有什么样的区别?企业根据其业务类型该选择哪一种?本文就针对这些问题,来探讨下这些方式都…...

vscode配色主题与图标库推荐

vscode配色主题推荐:Andromedavsocde图标库: vscode-icons Andromeda Dark theme with a taste of the universe 仙女座:一套宇宙深空体验的哑暗色主题; 高对比度,色彩饱和; Easy Installation Open the extensions sidebar on Visual Studio CodeSear…...

深度学习模型入门教程:从基础到应用

深度学习模型入门教程:从基础到应用 前言 在人工智能的浪潮中,深度学习作为一种强大的技术,正在各行各业中发挥着越来越重要的作用。从图像识别到自然语言处理,深度学习正在改变我们的生活和工作方式。本文将带您深入了解深度学…...

数据结构 软考

算法具有5个特性 可行性,有限性,确定性,输入, 输出 图: 有向图 Kruskal(克鲁斯卡尔)算法 和 prim(普鲁姆)算法 都是贪心算法 是一种用来在加权连通图中寻找最小生成树的算法,其操作对象是边. 找最小的不形成环 1.哈夫曼树(也叫最优树)…...

colcon构建ros2功能包时,出现exited with code 2报错的解决方案(bug)

背景: 在学习ros2时,跟着别人的示例进行构建,手敲的代码难免有一些语法错误。 问题: 在colcon构建时,并不会直接输出语法报错。而是出现exited with code 2错误,并提示未能生成功能包,就算加入…...

【大模型LLM面试合集】大语言模型架构_位置编码

位置编码 1.位置编码 不同于RNN、CNN等模型,对于Transformer模型来说,位置编码的加入是必不可少的,因为纯粹的Attention模块是无法捕捉输入顺序的,即无法区分不同位置的Token。为此我们大体有两个选择: 想办法将位置…...

FLINK 分流

在Apache Flink中,分流(Stream Splitting)是指将一条数据流拆分成完全独立的两条或多条流的过程。这通常基于一定的筛选条件,将符合条件的数据拣选出来并放入对应的流中。以下是关于Flink分流的详细解释: 一、分流方式…...

从零开始:构建一个高效的开源管理系统——使用 React 和 Ruoyi-Vue-Plus 的实战指南

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

windows下pycharm社区版2024下载与安装(包含新建第一个工程)

windows下pycharm社区版2024下载与安装 下载pycharm pycharm官网 安装pycharm 1.进入官网 pycharm官网 下载 点击Download–>右侧Other versions 下载对应的社区版(如下图):下载网址 2.点击运行下载好的安装包 点击下一步 3.更改pychar…...

重构案例:将纯HTML/JS项目迁移到Webpack

我们已经了解了许多关于 Webpack 的知识,但要完全熟练掌握它并非易事。一个很好的学习方法是通过实际项目练习。当我们对 Webpack 的配置有了足够的理解后,就可以尝试重构一些项目。本次我选择了一个纯HTML/JS的PC项目进行重构,项目位于 GitH…...

表格编辑demo

<el-form :model"form" :rules"status ? rules : {}" ref"form" class"form-container" :inline"true"><el-table :data"tableData"><el-table-column label"计算公式"><templat…...

企业自建邮件系统选U-Mail ,功能强大、安全稳定

在现代企业运营中&#xff0c;电子邮件扮演着至关重要的角色&#xff0c;随着企业规模的增长和业务的多样化&#xff0c;传统的租用第三方企业邮箱服务逐渐显现出其局限性。例如&#xff0c;存储空间受限、数据安全风险、缺乏灵活的管理和备份功能&#xff0c;以及无法与其他企…...

蓝桥杯题目理解

1. 一维差分 1.1. 小蓝的操作 1.1.1. 题目解析&#xff1a; 这道题提到了对于“区间”进行操作&#xff0c;而差分数列就是对于区间进行操作的好方法。 观察差分数列&#xff1a; 给定数列&#xff1a;1 3 5 2 7 1 差分数列&#xff1a;1 2 2 -3 5 6 题目要求把原数组全部…...

浪潮云启操作系统(InLinux)bcache缓存实践:理解OpenStack环境下虚拟机卷、Ceph OSD、bcache设备之间的映射关系

前言 在OpenStack平台上&#xff0c;采用bcache加速ceph分布式存储的方案被广泛用于企业和云环境。一方面&#xff0c;Ceph作为分布式存储系统&#xff0c;与虚拟机存储卷紧密结合&#xff0c;可以提供高可用和高性能的存储服务。另一方面&#xff0c;bcache作为混合存储方案&…...

通过ssh端口反向通道建立并实现linux系统的xrdp以及web访问

Content 1 问题描述2 原因分析3 解决办法3.1 安装x11以及gnome桌面环境查看是否安装x11否则使用下面指令安装x11组件查看是否安装gnome否则使用下面指令安装gnome桌面环境 3.2 安装xrdp使用下面指令安装xrdp&#xff08;如果安装了则跳过&#xff09;启动xrdp服务 3.3 远程服务…...

# 渗透测试#安全见闻8 量子物理面临的安全挑战

# 渗透测试#安全见闻8 量子物理面临的安全挑战 ##B站陇羽Sec## 量子计算原理与技术 量子计算是一种基于量子力学原理的计算方式&#xff0c;它利用量子位&#xff08;qubits&#xff09;来进行信息处理和计算…...

【rabbitmq】实现问答消息消费示例

目录 1. 说明2. 截图2.1 接口调用截图2.2 项目结构截图 3. 代码示例 1. 说明 1.实现的是一个简单的sse接口&#xff0c;单向的长连接&#xff0c;后端可以向前端不断输出数据。2.通过调用sse接口&#xff0c;触发rabbitmq向队列塞消息&#xff0c;向前端返回一个sseEmitter对象…...

单片机_RTOS__架构概念

经典单片机程序 void main() {while(1){函数1&#xff08;&#xff09;&#xff1b;函数2&#xff08;&#xff09;&#xff1b;}} 有无RTOS区别 裸机 RTOS RTOS程序 喂饭&#xff08;&#xff09; {while&#xff08;1&#xff09;{喂一口饭&#xff08;&#xff09;;} } …...

ClickHouse在百度MEG数据中台的落地和优化

导读 百度MEG上一代大数据产品存在平台分散、质量不均和易用性差等问题&#xff0c;导致开发效率低下、学习成本高&#xff0c;业务需求响应迟缓。为了解决这些问题&#xff0c;百度MEG内部开发了图灵3.0生态系统&#xff0c;包括Turing Data Engine(TDE)计算引擎、Turing Dat…...

B/S架构(Browser/Server)与C/S架构(Client/Server)

基本概念 B/S架构&#xff08;Browser/Server&#xff09;&#xff1a;即浏览器/服务器架构。在这种架构中&#xff0c;用户通过浏览器&#xff08;如Chrome、Firefox、Safari等&#xff09;访问服务器上的应用程序。服务器端负责处理业务逻辑、存储数据等核心功能&#xff0c;…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...