数据库、数据仓库、数据湖和数据中台有什么区别
很多企业在面对数据存储和管理时不知道如何选择合适的方式,数据库、数据仓库、数据湖和数据中台,这些方式都是什么?有什么样的区别?企业根据其业务类型该选择哪一种?本文就针对这些问题,来探讨下这些方式都有什么区别,企业该怎么选择合适的数据管理方式。
一、数据库
数据库是一种结构化数据存储技术,用于存储和管理有组织的数据。数据库通常使用关系型模型来组织数据,并使用SQL来查询和操作数据。数据库是用于处理事务性数据的最常见类型的存储,适用于需要高度结构化和规范化的应用场景,例如企业管理系统、电子商务平台等。
常见的数据库有:
关系型数据库:MySQL、Oracle、SQL Server、PostgreSQL等
非关系型数据库:MongoDB(文档型数据库)、Redis、HBase(存储大规模结构化数据)

二、数据仓库
数据仓库是一种专门用于分析和报告的大型结构化数据存储技术。与传统数据库不同,数据仓库通常包含历史记录和大量冗余信息,以便支持复杂的分析查询。它们通常是企业级解决方案,用于从各种源中采集和存储数据,以便进行分析和报告。通常使用数据仓库ETL工具将数据从多个源中提取并转换为通用格式,然后将其加载到数据仓库中,并使用OLAP工具进行多维分析。
数据仓库架构:数据源、ETL过程、数据存储、数据分析与报表、数据管理与监控
数据仓库建模:维度建模、范式建模
数据仓库主要用途:存储历史数据、支持决策分析、支持数据分析、支持数据备份和恢复

三、数据湖
数据湖是一种非结构化或半结构化大型数据存储技术,用于存储各种类型和格式的原始或未处理的数据。数据库、数据仓库和数据湖的区别之一在于,数据湖通常不需要预定义模式或架构,并且可以在需要时进行灵活地查询和分析。数据湖也可以从多个源中采集和存储数据,但它们通常不会在数据加载之前对其进行转换。由于其灵活性和可扩展性,数据湖适用于大规模数据分析和机器学习等应用场景。

四、数据中台
数据中台是一种企业级的数据管理和服务平台,它整合了企业内外部的各种数据资源,通过数据的采集、存储、处理、分析和服务等环节,为企业提供统一的数据管理和数据分析服务,帮助企业实现数据驱动的决策和业务创新。
数据中台的组成部分:数据采集层;数据存储层;数据处理层;数据分析层;数据服务层
数据中台的作用:数据整合;数据治理;数据分析和挖掘;数据服务;
数据中台与数据仓库的区别?
首先在定位上两者有不同:
数据中台的定位是:企业级的大数据平台,强调的是数据的整合、共享和复用,旨在为企业提供统一的数据服务和数据分析能力,支持企业的数字化转型和业务创新
--目的:实现数据资产化,提升数据的价值和可用性,打破数据孤岛,促进业务与数据的深度融合,提高企业运营的效率和决策水平
数据仓库定位是:用于存储和管理企业的历史数据,为企业的决策支持提供数据基础。通常是面向特定主题的,如销售、财务等
--目的:为整合企业内部的多个数据元,提供一致、准确的数据,支持企业的报表生成、数据分析和数据挖掘

五、综合区别
总的来说,从基础能力上看:
1.数据平台:提供的是计算和存储能力
2.数据仓库:利用数据平台提供的计算和存储能力,在一套方法轮的指导下建设的一整套的数据表
3.数据中台:包含了数据平台和数据仓库的所有内容,将其打包,并且以更加整合以及更加产品化的方式对外提供服务和价值
4.数据湖:一个存储企业各种各样原始数据的大型仓库,包括结构化和非结构化数据,其中湖里的数据可供存取、处理、分析和传输
从业务能力上看:
1.数据平台:为业务提供数据主要方式是提供数据集
2.数据仓库:相对具体的功能概念是存储和管理一个或多个主题数据的集合,为业务提供服务的方式主要是分析报表
3.数据中台:企业级的逻辑概念,体现企业数据产生价值的能力,为业务提供服务的主要方式是数据API
4.数据湖:数据仓库的数据来源
总的来说,数据中台距离业务更近,数据复用能力更强,能为业务提供速度更快的服务,数据中台在数据仓库和数据平台的基础上,将数据生产为一个个数据API服务,以更高效的方式提供给业务。数据中台可以建立在数据仓库和数据平台之上,是加速企业从数据到业务价值的过程的中间层
企业应该如何进行选择?
在当今的大数据时代,企业需要处理和分析越来越多的数据,以便更好地了解客户需求、优化业务流程、提高生产效率等。为了实现这些目标,企业需要选择适合自己的数据存储技术。在选择之前,企业需要考虑以下几个因素:
1. 数据类型和来源。
如果大部分数据都是结构化的,并且来自于内部系统或外部供应商,使用数据仓库更为合适。通常使用数据仓库ETL工具将多个源中的异构数据集成到一个统一的存储中进行多维分析。如果企业处理的数据类型和来源多样化,包括结构化、半结构化和非结构化数据,并且需要进行实时分析,则使用数据湖可能更为合适。数据湖可以存储各种类型和格式的原始或未处理的数据,并且可以在需要时进行灵活地查询和分析。
2. 数据量和增长速度。
如果企业处理的数据量较小,增长速度较慢,则使用传统数据库可能足够。但是,如果企业处理的数据量非常大,并且增长速度很快,则使用数据仓库或者数据湖可能更为合适。
3. 分析需求。
如果企业需要进行复杂的多维分析,并且需要频繁地查询和报告,则使用数据仓库可能更为合适。但是,如果企业需要进行实时分析,并且需要快速地探索新型分析模型,则使用数据湖可能更为合适。
4. 技术能力和资源。
如果企业拥有足够的技术能力和资源,并且能够承担高昂的维护成本,则使用数据仓库或者数据湖可能更为合适。
了解更多数据仓库与数据集成关干货内容请关注>>>FineDataLink官网
免费试用、获取更多信息,点击了解更多>>>体验FDL功能
相关文章:
数据库、数据仓库、数据湖和数据中台有什么区别
很多企业在面对数据存储和管理时不知道如何选择合适的方式,数据库、数据仓库、数据湖和数据中台,这些方式都是什么?有什么样的区别?企业根据其业务类型该选择哪一种?本文就针对这些问题,来探讨下这些方式都…...
vscode配色主题与图标库推荐
vscode配色主题推荐:Andromedavsocde图标库: vscode-icons Andromeda Dark theme with a taste of the universe 仙女座:一套宇宙深空体验的哑暗色主题; 高对比度,色彩饱和; Easy Installation Open the extensions sidebar on Visual Studio CodeSear…...
深度学习模型入门教程:从基础到应用
深度学习模型入门教程:从基础到应用 前言 在人工智能的浪潮中,深度学习作为一种强大的技术,正在各行各业中发挥着越来越重要的作用。从图像识别到自然语言处理,深度学习正在改变我们的生活和工作方式。本文将带您深入了解深度学…...
数据结构 软考
算法具有5个特性 可行性,有限性,确定性,输入, 输出 图: 有向图 Kruskal(克鲁斯卡尔)算法 和 prim(普鲁姆)算法 都是贪心算法 是一种用来在加权连通图中寻找最小生成树的算法,其操作对象是边. 找最小的不形成环 1.哈夫曼树(也叫最优树)…...
colcon构建ros2功能包时,出现exited with code 2报错的解决方案(bug)
背景: 在学习ros2时,跟着别人的示例进行构建,手敲的代码难免有一些语法错误。 问题: 在colcon构建时,并不会直接输出语法报错。而是出现exited with code 2错误,并提示未能生成功能包,就算加入…...
【大模型LLM面试合集】大语言模型架构_位置编码
位置编码 1.位置编码 不同于RNN、CNN等模型,对于Transformer模型来说,位置编码的加入是必不可少的,因为纯粹的Attention模块是无法捕捉输入顺序的,即无法区分不同位置的Token。为此我们大体有两个选择: 想办法将位置…...
FLINK 分流
在Apache Flink中,分流(Stream Splitting)是指将一条数据流拆分成完全独立的两条或多条流的过程。这通常基于一定的筛选条件,将符合条件的数据拣选出来并放入对应的流中。以下是关于Flink分流的详细解释: 一、分流方式…...
从零开始:构建一个高效的开源管理系统——使用 React 和 Ruoyi-Vue-Plus 的实战指南
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
windows下pycharm社区版2024下载与安装(包含新建第一个工程)
windows下pycharm社区版2024下载与安装 下载pycharm pycharm官网 安装pycharm 1.进入官网 pycharm官网 下载 点击Download–>右侧Other versions 下载对应的社区版(如下图):下载网址 2.点击运行下载好的安装包 点击下一步 3.更改pychar…...
重构案例:将纯HTML/JS项目迁移到Webpack
我们已经了解了许多关于 Webpack 的知识,但要完全熟练掌握它并非易事。一个很好的学习方法是通过实际项目练习。当我们对 Webpack 的配置有了足够的理解后,就可以尝试重构一些项目。本次我选择了一个纯HTML/JS的PC项目进行重构,项目位于 GitH…...
表格编辑demo
<el-form :model"form" :rules"status ? rules : {}" ref"form" class"form-container" :inline"true"><el-table :data"tableData"><el-table-column label"计算公式"><templat…...
企业自建邮件系统选U-Mail ,功能强大、安全稳定
在现代企业运营中,电子邮件扮演着至关重要的角色,随着企业规模的增长和业务的多样化,传统的租用第三方企业邮箱服务逐渐显现出其局限性。例如,存储空间受限、数据安全风险、缺乏灵活的管理和备份功能,以及无法与其他企…...
蓝桥杯题目理解
1. 一维差分 1.1. 小蓝的操作 1.1.1. 题目解析: 这道题提到了对于“区间”进行操作,而差分数列就是对于区间进行操作的好方法。 观察差分数列: 给定数列:1 3 5 2 7 1 差分数列:1 2 2 -3 5 6 题目要求把原数组全部…...
浪潮云启操作系统(InLinux)bcache缓存实践:理解OpenStack环境下虚拟机卷、Ceph OSD、bcache设备之间的映射关系
前言 在OpenStack平台上,采用bcache加速ceph分布式存储的方案被广泛用于企业和云环境。一方面,Ceph作为分布式存储系统,与虚拟机存储卷紧密结合,可以提供高可用和高性能的存储服务。另一方面,bcache作为混合存储方案&…...
通过ssh端口反向通道建立并实现linux系统的xrdp以及web访问
Content 1 问题描述2 原因分析3 解决办法3.1 安装x11以及gnome桌面环境查看是否安装x11否则使用下面指令安装x11组件查看是否安装gnome否则使用下面指令安装gnome桌面环境 3.2 安装xrdp使用下面指令安装xrdp(如果安装了则跳过)启动xrdp服务 3.3 远程服务…...
# 渗透测试#安全见闻8 量子物理面临的安全挑战
# 渗透测试#安全见闻8 量子物理面临的安全挑战 ##B站陇羽Sec## 量子计算原理与技术 量子计算是一种基于量子力学原理的计算方式,它利用量子位(qubits)来进行信息处理和计算…...
【rabbitmq】实现问答消息消费示例
目录 1. 说明2. 截图2.1 接口调用截图2.2 项目结构截图 3. 代码示例 1. 说明 1.实现的是一个简单的sse接口,单向的长连接,后端可以向前端不断输出数据。2.通过调用sse接口,触发rabbitmq向队列塞消息,向前端返回一个sseEmitter对象…...
单片机_RTOS__架构概念
经典单片机程序 void main() {while(1){函数1();函数2();}} 有无RTOS区别 裸机 RTOS RTOS程序 喂饭() {while(1){喂一口饭();} } …...
ClickHouse在百度MEG数据中台的落地和优化
导读 百度MEG上一代大数据产品存在平台分散、质量不均和易用性差等问题,导致开发效率低下、学习成本高,业务需求响应迟缓。为了解决这些问题,百度MEG内部开发了图灵3.0生态系统,包括Turing Data Engine(TDE)计算引擎、Turing Dat…...
B/S架构(Browser/Server)与C/S架构(Client/Server)
基本概念 B/S架构(Browser/Server):即浏览器/服务器架构。在这种架构中,用户通过浏览器(如Chrome、Firefox、Safari等)访问服务器上的应用程序。服务器端负责处理业务逻辑、存储数据等核心功能,…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
