当前位置: 首页 > news >正文

LeetCode题练习与总结:4的幂--342

一、题目描述

给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。

整数 n 是 4 的幂次方需满足:存在整数 x 使得 n == 4^x

示例 1:

输入:n = 16
输出:true

示例 2:

输入:n = 5
输出:false

示例 3:

输入:n = 1
输出:true

提示:

  • -2^31 <= n <= 2^31 - 1

二、解题思路

要判断一个整数是否是 4 的幂次方,我们可以利用以下性质:

  1. 4 的幂次方一定是正数。
  2. 4 的幂次方的二进制表示中,只有一个 1,且这个 1 出现在奇数位置上(从右边开始计数,第 1、3、5、… 位)。

基于以上性质,我们可以采用以下步骤进行判断:

  1. 首先判断 n 是否大于 0,如果不大于 0,直接返回 false。
  2. 然后判断 n 的二进制表示中是否只有一个 1。这可以通过 n & (n - 1) 来判断,如果结果为 0,说明 n 只有一个 1。
  3. 最后判断这个 1 是否出现在奇数位置上。可以通过与一个特殊的数进行按位与操作来判断,这个特殊的数是一个只在奇数位置上为 1 的数,例如 0x55555555(十六进制)。

三、具体代码

class Solution {public boolean isPowerOfFour(int n) {// 0x55555555 是一个特殊的数,它的二进制表示为:01010101010101010101010101010101// 只在奇数位置上有 1,可以用来判断 4 的幂次方的 1 是否在奇数位置上return n > 0 && (n & (n - 1)) == 0 && (n & 0x55555555) != 0;}
}

这段代码首先判断 n 是否大于 0,然后通过 n & (n - 1) 判断 n 是否只有一个 1,最后通过 n & 0x55555555 判断这个 1 是否在奇数位置上。如果这三个条件都满足,则 n 是 4 的幂次方。

四、时间复杂度和空间复杂度

1. 时间复杂度

在这个函数中,我们执行了以下操作:

  • n > 0:这是一个常数时间的比较操作,时间复杂度为 O(1)。
  • (n & (n - 1)) == 0:这是一个位操作,它会持续执行直到 n 变为 0。在最坏的情况下,n 是 2 的幂次方但不是 4 的幂次方,那么这个操作会执行 log2(n) 次(因为每次操作都会移除 n 的最低位的 1),所以这个操作的时间复杂度是 O(log n)。
  • (n & 0x55555555) != 0:这是一个按位与操作,它也是常数时间操作,时间复杂度为 O(1)。

由于这些操作是顺序执行的,所以整个函数的时间复杂度取决于最耗时的操作,即 O(log n)。

2. 空间复杂度

在这个函数中:

  • 我们没有使用任何额外的数据结构(如数组、集合、栈等)。
  • 我们只使用了几个整型变量 n(n - 1) 和 0x55555555,这些变量占用的空间是常数。

因此,空间复杂度为 O(1),表示算法的额外空间需求不随输入规模增长而增长。

五、总结知识点

  • 位操作符(Bitwise Operators):

    • &(按位与操作符):用于比较两个整数的二进制表示,只有在两个比较位都为 1 时,结果位才为 1。
    • -(减法操作符):用于计算两个数的差,这里用于 (n - 1)
  • 逻辑操作符(Logical Operators):

    • >(大于操作符):用于比较两个数的大小。
    • ==(等于操作符):用于比较两个数的值是否相等。
    • !=(不等于操作符):用于比较两个数的值是否不相等。
    • &&(逻辑与操作符):用于连接两个布尔表达式,只有两个表达式都为 true 时,结果才为 true。
  • 特殊数值:

    • 0x55555555:这是一个十六进制常量,其二进制表示为 01010101010101010101010101010101,这个数值用于检测一个数的二进制表示中 1 的位置是否只在奇数索引上。
  • 整数与二进制表示:

    • 整数在计算机中是以二进制形式存储的,代码中的位操作是基于整数的二进制表示进行的。
  • 递归下降:

    • (n & (n - 1)) == 0 这个操作可以看作是一种递归下降的过程,每次操作都会将 n 的最低位的 1 置为 0,直到 n 变为 0。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

相关文章:

LeetCode题练习与总结:4的幂--342

一、题目描述 给定一个整数&#xff0c;写一个函数来判断它是否是 4 的幂次方。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 整数 n 是 4 的幂次方需满足&#xff1a;存在整数 x 使得 n 4^x 示例 1&#xff1a; 输入&#xff1a;n 16 输出&am…...

ubuntu GLEW could not be initialized : Unknown error

原因 某些ubuntu版本默认使用wayland协议&#xff0c;glew不支持 解决方法 1、编辑GDM3配置文件 sudo nano /etc/gdm3/custom.conf 2、修改配置文件 去掉#WaylandEnablefalse前的# 3、重启GDM3服务 sudo systemctl restart gdm3 修改后默认使用X11协议。...

51c~目标检测~合集1

我自己的原文哦~ https://blog.51cto.com/whaosoft/12371248 #目标检测x1 又一个发现 都不知道是第几了 是一个高效的目标检测 动态候选较大程度提升检测精度 目标检测是一项基本的计算机视觉任务&#xff0c;用于对给定图像中的目标进行定位和分类。 论文地址&#xff1a…...

前端工程化面试题

说一下模块化方案 模块化是为了解决代码的复用和组织问题&#xff0c;可以说有了模块化才让前端有了工程的概念&#xff0c;模块化要解决两大问题 代码隔离和依赖管理&#xff0c;从node.js最早发布的commonjs 到浏览器端的 AMD,CMD 规范以及兼容的 UMD 规范&#xff0c;再到现…...

【Visual Studio】下载安装 Visual Studio Community 并配置 C++ 桌面开发环境的图文教程

引言 Visual Studio 是一个面向 .NET 和 C 开发人员的综合性 Windows 版 IDE&#xff0c;可用于构建 Web、云、桌面、移动应用、服务和游戏。 安装步骤 访问 Visual Studio 的官方下载页面&#xff1a; https://visualstudio.microsoft.com/zh-hans/downloads/运行已下载的 V…...

010Editor:十六进制编辑器

介绍 世界上最好的十六进制编辑器和出色的文本编辑器 010 Editor 是用于处理文本和二进制数据的终极工具包。 添加模板 模板库https://www.sweetscape.com/010editor/repository/templates/ 先下载一个ELF 模板 运行模板...

Vscode中Github Copilot无法使用

现象 Copilot侧边栏显示要登录&#xff0c;但是点击"github登录"没有反应与Copilot对话&#xff0c;报错如下&#xff1a; Unexpected token o, "[object Rea"... is not valid JSON解决方案 在网上怎么找都没找到类似的问题&#xff0c;最后发现是Vsco…...

<项目代码>YOLOv8表情识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…...

利用Msfvenom实现对Windows的远程控制

1.实验准备 kali安装 Apache2&#xff08;如果尚未安装&#xff09;&#xff1a; sudo apt install apache2 启动 Apache2 服务&#xff1a; sudo systemctl start apache2确认 Apache2 的默认网页可以访问&#xff1a; 打开浏览器并访问 http://<你的Kali IP>&#xff…...

Java Iterator和for区别详解和常见问题及解决方式

在 Java 中&#xff0c;Iterator 是一个用于遍历集合元素的接口。它为访问集合中的元素提供了一种标准的方法&#xff0c;不管具体集合的实现如何。本文将详细讲解 Iterator 的使用、其与 for 循环的区别&#xff0c;以及在遍历集合时的删除操作可能带来的问题&#xff0c;并提…...

川渝地区软件工程考研择校分析

C哥专业提供——计软考研院校选择分析专业课备考指南规划 通过最新数据分析,5所高校软件工程专业2025年考研难度从高到低预计为: 电子科技大学 >> 四川大学 > 重庆大学 ≈ 西南交通大学 > 西南大学 对于想考川渝地区985但核心目标为优先上岸的考生,建议重点考虑西…...

快捷键记忆

快捷键记忆 文章目录 快捷键记忆前言一、PotPlayer快捷键二、电脑快捷键总结 前言 提示&#xff1a;以下是本篇文章正文内容&#xff1a; 一些软件的快捷键经常忘记&#xff0c;写这篇文章的目的是帮助我忘记的时候来查看。 顺序实时更新&#xff1a; 一、PotPlayer快捷键 Po…...

Flutter鸿蒙next 状态管理高级使用:深入探讨 Provider

✅近期推荐&#xff1a;求职神器 https://bbs.csdn.net/topics/619384540 &#x1f525;欢迎大家订阅系列专栏&#xff1a;flutter_鸿蒙next &#x1f4ac;淼学派语录&#xff1a;只有不断的否认自己和肯定自己&#xff0c;才能走出弯曲不平的泥泞路&#xff0c;因为平坦的大路…...

JMeter实战之——模拟登录

本篇介绍使用JMeter 如何对需要登录的站点进行压力测试。 基本Session验证的机制 使用session进行请求验证的机制是一种常见的Web应用认证方式。 该认证方式的主要内容如下&#xff1a; 一、登录过程 用户输入&#xff1a;用户在登录页面输入用户名和密码。发送请求&#x…...

智能台灯设计(一)原理图设计

1. 前言 作者最近突发奇想&#xff0c;想自己做一个小台灯&#xff0c;设想的功能有&#xff1a;带锂电池可充电、可以调节亮度&#xff0c;后续通过增加WIFI模块实现手机控制开关功能。目前先实现最简单的功能&#xff0c;有时间再一步步完善吧。 2. 原理图设计 充电芯片使用…...

数据库查询返回结果集及其元数据信息:ResultSet 和 ResultSetMetaData 深度解析

全文目录&#xff1a; 开篇语&#x1f4cc; 目录&#x1f31f; 前言&#x1f4dd; 摘要&#x1f4da; 简介&#x1f50d; 概述&#x1f9e9; 核心源码解读1️⃣ 创建数据库连接2️⃣ 执行查询获取结果集3️⃣ 读取查询数据4️⃣ 获取元数据信息 &#x1f4bb; 案例分析&#x1…...

2.插入排序(斗地主起牌)

一、思想 扑克牌起牌 代码&#xff1a; 二、时间复杂度&#xff1a; 最好情况&#xff08;已经排序好的&#xff09;&#xff1a;T O(N) 最坏情况&#xff08;完全逆序&#xff09;&#xff1a;T O(N^2) 三、优劣&#xff1a; 严格的大小比较之后才进行错位插入&#x…...

漫谈编程小白如何成为大神:夯实基础,开启通神之路

在当今数字化时代&#xff0c;编程已成为一项基本技能&#xff0c;对于大学新生而言&#xff0c;掌握编程能力不仅能够为学术研究提供支持&#xff0c;还能为未来的职业生涯开辟广阔天地。然而&#xff0c;面对琳琅满目的编程语言和学习资源&#xff0c;新生们往往会感到迷茫和…...

基于机器学习的个性化电影推荐系统【源码+安装+讲解+售后+文档】

【1】系统介绍 研究背景 随着互联网技术的迅速发展&#xff0c;数字娱乐内容特别是电影和电视剧的数量急剧增加。用户在享受丰富内容的同时&#xff0c;也面临着选择困难的问题&#xff0c;即“信息过载”。传统的搜索和分类方法已经无法满足用户日益增长的个性化需求。与此同…...

企业如何配合好等级保护测评工作?

企业如何配合好等级保护测评工作&#xff0c;是一个涉及多方面因素的系统性任务。等级保护测评&#xff0c;简称等保测评&#xff0c;是中国对信息和信息系统安全的重要管理手段和评估制度。通过这一制度&#xff0c;企业可以全面了解其信息系统的安全状况&#xff0c;及时发现…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...