LeetCode题练习与总结:4的幂--342
一、题目描述
给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。
整数 n 是 4 的幂次方需满足:存在整数 x 使得 n == 4^x
示例 1:
输入:n = 16 输出:true
示例 2:
输入:n = 5 输出:false
示例 3:
输入:n = 1 输出:true
提示:
-2^31 <= n <= 2^31 - 1
二、解题思路
要判断一个整数是否是 4 的幂次方,我们可以利用以下性质:
- 4 的幂次方一定是正数。
- 4 的幂次方的二进制表示中,只有一个 1,且这个 1 出现在奇数位置上(从右边开始计数,第 1、3、5、… 位)。
基于以上性质,我们可以采用以下步骤进行判断:
- 首先判断 n 是否大于 0,如果不大于 0,直接返回 false。
- 然后判断 n 的二进制表示中是否只有一个 1。这可以通过 n & (n - 1) 来判断,如果结果为 0,说明 n 只有一个 1。
- 最后判断这个 1 是否出现在奇数位置上。可以通过与一个特殊的数进行按位与操作来判断,这个特殊的数是一个只在奇数位置上为 1 的数,例如 0x55555555(十六进制)。
三、具体代码
class Solution {public boolean isPowerOfFour(int n) {// 0x55555555 是一个特殊的数,它的二进制表示为:01010101010101010101010101010101// 只在奇数位置上有 1,可以用来判断 4 的幂次方的 1 是否在奇数位置上return n > 0 && (n & (n - 1)) == 0 && (n & 0x55555555) != 0;}
}
这段代码首先判断 n 是否大于 0,然后通过 n & (n - 1) 判断 n 是否只有一个 1,最后通过 n & 0x55555555 判断这个 1 是否在奇数位置上。如果这三个条件都满足,则 n 是 4 的幂次方。
四、时间复杂度和空间复杂度
1. 时间复杂度
在这个函数中,我们执行了以下操作:
n > 0:这是一个常数时间的比较操作,时间复杂度为 O(1)。(n & (n - 1)) == 0:这是一个位操作,它会持续执行直到 n 变为 0。在最坏的情况下,n 是 2 的幂次方但不是 4 的幂次方,那么这个操作会执行 log2(n) 次(因为每次操作都会移除 n 的最低位的 1),所以这个操作的时间复杂度是 O(log n)。(n & 0x55555555) != 0:这是一个按位与操作,它也是常数时间操作,时间复杂度为 O(1)。
由于这些操作是顺序执行的,所以整个函数的时间复杂度取决于最耗时的操作,即 O(log n)。
2. 空间复杂度
在这个函数中:
- 我们没有使用任何额外的数据结构(如数组、集合、栈等)。
- 我们只使用了几个整型变量
n,(n - 1)和0x55555555,这些变量占用的空间是常数。
因此,空间复杂度为 O(1),表示算法的额外空间需求不随输入规模增长而增长。
五、总结知识点
-
位操作符(Bitwise Operators):
&(按位与操作符):用于比较两个整数的二进制表示,只有在两个比较位都为 1 时,结果位才为 1。-(减法操作符):用于计算两个数的差,这里用于(n - 1)。
-
逻辑操作符(Logical Operators):
>(大于操作符):用于比较两个数的大小。==(等于操作符):用于比较两个数的值是否相等。!=(不等于操作符):用于比较两个数的值是否不相等。&&(逻辑与操作符):用于连接两个布尔表达式,只有两个表达式都为 true 时,结果才为 true。
-
特殊数值:
0x55555555:这是一个十六进制常量,其二进制表示为01010101010101010101010101010101,这个数值用于检测一个数的二进制表示中 1 的位置是否只在奇数索引上。
-
整数与二进制表示:
- 整数在计算机中是以二进制形式存储的,代码中的位操作是基于整数的二进制表示进行的。
-
递归下降:
(n & (n - 1)) == 0这个操作可以看作是一种递归下降的过程,每次操作都会将 n 的最低位的 1 置为 0,直到 n 变为 0。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。
相关文章:
LeetCode题练习与总结:4的幂--342
一、题目描述 给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。 整数 n 是 4 的幂次方需满足:存在整数 x 使得 n 4^x 示例 1: 输入:n 16 输出&am…...
ubuntu GLEW could not be initialized : Unknown error
原因 某些ubuntu版本默认使用wayland协议,glew不支持 解决方法 1、编辑GDM3配置文件 sudo nano /etc/gdm3/custom.conf 2、修改配置文件 去掉#WaylandEnablefalse前的# 3、重启GDM3服务 sudo systemctl restart gdm3 修改后默认使用X11协议。...
51c~目标检测~合集1
我自己的原文哦~ https://blog.51cto.com/whaosoft/12371248 #目标检测x1 又一个发现 都不知道是第几了 是一个高效的目标检测 动态候选较大程度提升检测精度 目标检测是一项基本的计算机视觉任务,用于对给定图像中的目标进行定位和分类。 论文地址:…...
前端工程化面试题
说一下模块化方案 模块化是为了解决代码的复用和组织问题,可以说有了模块化才让前端有了工程的概念,模块化要解决两大问题 代码隔离和依赖管理,从node.js最早发布的commonjs 到浏览器端的 AMD,CMD 规范以及兼容的 UMD 规范,再到现…...
【Visual Studio】下载安装 Visual Studio Community 并配置 C++ 桌面开发环境的图文教程
引言 Visual Studio 是一个面向 .NET 和 C 开发人员的综合性 Windows 版 IDE,可用于构建 Web、云、桌面、移动应用、服务和游戏。 安装步骤 访问 Visual Studio 的官方下载页面: https://visualstudio.microsoft.com/zh-hans/downloads/运行已下载的 V…...
010Editor:十六进制编辑器
介绍 世界上最好的十六进制编辑器和出色的文本编辑器 010 Editor 是用于处理文本和二进制数据的终极工具包。 添加模板 模板库https://www.sweetscape.com/010editor/repository/templates/ 先下载一个ELF 模板 运行模板...
Vscode中Github Copilot无法使用
现象 Copilot侧边栏显示要登录,但是点击"github登录"没有反应与Copilot对话,报错如下: Unexpected token o, "[object Rea"... is not valid JSON解决方案 在网上怎么找都没找到类似的问题,最后发现是Vsco…...
<项目代码>YOLOv8表情识别<目标检测>
YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…...
利用Msfvenom实现对Windows的远程控制
1.实验准备 kali安装 Apache2(如果尚未安装): sudo apt install apache2 启动 Apache2 服务: sudo systemctl start apache2确认 Apache2 的默认网页可以访问: 打开浏览器并访问 http://<你的Kali IP>ÿ…...
Java Iterator和for区别详解和常见问题及解决方式
在 Java 中,Iterator 是一个用于遍历集合元素的接口。它为访问集合中的元素提供了一种标准的方法,不管具体集合的实现如何。本文将详细讲解 Iterator 的使用、其与 for 循环的区别,以及在遍历集合时的删除操作可能带来的问题,并提…...
川渝地区软件工程考研择校分析
C哥专业提供——计软考研院校选择分析专业课备考指南规划 通过最新数据分析,5所高校软件工程专业2025年考研难度从高到低预计为: 电子科技大学 >> 四川大学 > 重庆大学 ≈ 西南交通大学 > 西南大学 对于想考川渝地区985但核心目标为优先上岸的考生,建议重点考虑西…...
快捷键记忆
快捷键记忆 文章目录 快捷键记忆前言一、PotPlayer快捷键二、电脑快捷键总结 前言 提示:以下是本篇文章正文内容: 一些软件的快捷键经常忘记,写这篇文章的目的是帮助我忘记的时候来查看。 顺序实时更新: 一、PotPlayer快捷键 Po…...
Flutter鸿蒙next 状态管理高级使用:深入探讨 Provider
✅近期推荐:求职神器 https://bbs.csdn.net/topics/619384540 🔥欢迎大家订阅系列专栏:flutter_鸿蒙next 💬淼学派语录:只有不断的否认自己和肯定自己,才能走出弯曲不平的泥泞路,因为平坦的大路…...
JMeter实战之——模拟登录
本篇介绍使用JMeter 如何对需要登录的站点进行压力测试。 基本Session验证的机制 使用session进行请求验证的机制是一种常见的Web应用认证方式。 该认证方式的主要内容如下: 一、登录过程 用户输入:用户在登录页面输入用户名和密码。发送请求&#x…...
智能台灯设计(一)原理图设计
1. 前言 作者最近突发奇想,想自己做一个小台灯,设想的功能有:带锂电池可充电、可以调节亮度,后续通过增加WIFI模块实现手机控制开关功能。目前先实现最简单的功能,有时间再一步步完善吧。 2. 原理图设计 充电芯片使用…...
数据库查询返回结果集及其元数据信息:ResultSet 和 ResultSetMetaData 深度解析
全文目录: 开篇语📌 目录🌟 前言📝 摘要📚 简介🔍 概述🧩 核心源码解读1️⃣ 创建数据库连接2️⃣ 执行查询获取结果集3️⃣ 读取查询数据4️⃣ 获取元数据信息 💻 案例分析…...
2.插入排序(斗地主起牌)
一、思想 扑克牌起牌 代码: 二、时间复杂度: 最好情况(已经排序好的):T O(N) 最坏情况(完全逆序):T O(N^2) 三、优劣: 严格的大小比较之后才进行错位插入&#x…...
漫谈编程小白如何成为大神:夯实基础,开启通神之路
在当今数字化时代,编程已成为一项基本技能,对于大学新生而言,掌握编程能力不仅能够为学术研究提供支持,还能为未来的职业生涯开辟广阔天地。然而,面对琳琅满目的编程语言和学习资源,新生们往往会感到迷茫和…...
基于机器学习的个性化电影推荐系统【源码+安装+讲解+售后+文档】
【1】系统介绍 研究背景 随着互联网技术的迅速发展,数字娱乐内容特别是电影和电视剧的数量急剧增加。用户在享受丰富内容的同时,也面临着选择困难的问题,即“信息过载”。传统的搜索和分类方法已经无法满足用户日益增长的个性化需求。与此同…...
企业如何配合好等级保护测评工作?
企业如何配合好等级保护测评工作,是一个涉及多方面因素的系统性任务。等级保护测评,简称等保测评,是中国对信息和信息系统安全的重要管理手段和评估制度。通过这一制度,企业可以全面了解其信息系统的安全状况,及时发现…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
