当前位置: 首页 > news >正文

git diff命令详解

git diff 是 Git 中非常常用的命令,用于比较不同版本的文件改动。可以比较工作区、暂存区、或者提交之间的差异。下面是对 git diff 常用场景的详细解释:

1. git diff

当你执行 git diff 时,它会显示工作区与暂存区之间的差异,也就是你在工作区中修改了但还没有添加到暂存区(使用 git add)的内容。例如:

git diff
说明:
  • 左侧:显示的是修改前的代码(减号 - 表示删除的行)。
  • 右侧:显示的是修改后的代码(加号 + 表示新增的行)。

2. git diff --cachedgit diff --staged

这个命令用于显示暂存区与最后一次提交之间的差异。也就是说,已经 git add 了的改动,但还没有 git commit。例如:

git diff --cached
说明:
  • 它显示的是已经准备好提交的改动,区别于 git diff 只显示工作区中的修改。

3. git diff [branch1] [branch2]

可以比较两个分支之间的差异,显示从 branch1branch2 的不同。例如:

git diff main feature-branch
说明:
  • 该命令会展示从 main 分支到 feature-branch 的改动内容。

4. git diff [commit1] [commit2]

用于比较两个提交之间的差异,commit1commit2 可以是提交的哈希值或分支名称。例如:

git diff 1a2b3c 4d5e6f
说明:
  • 这个命令会列出从 commit1commit2 所做的改动。

5. git diff --name-only

这个命令会只显示发生变化的文件名,而不会显示具体的内容。例如:

git diff --name-only
说明:
  • 该命令适合快速查看有哪些文件发生了改动,而不需要查看改动的具体细节。

6. git diff --stat

显示文件的差异摘要,包括哪些文件改变了,以及每个文件的插入和删除的行数。例如:

git diff --stat
说明:
  • 适用于想快速了解改动的概况,特别是文件数目和具体改动的规模。

7. git diff [file]

只比较某个特定文件的改动。例如:

git diff index.html
说明:
  • 只显示 index.html 文件的改动,适用于需要查看单个文件的差异。

8. git diff [commit] [file]

用于查看某个文件在特定提交之前或之后的改动。例如:

git diff 1a2b3c index.html
说明:
  • 显示从 commit 到当前状态 index.html 文件的差异。

9. git diff --word-diff

将差异以词为单位显示,而不是以行为单位。例如:

git diff --word-diff
说明:
  • 这个命令更适合代码较少但内容修改较细微的情况。

10. git diff HEAD

显示当前工作目录和最近一次提交的差异,即工作区和 HEAD 提交之间的改动。例如:

git diff HEAD
说明:
  • 它显示工作区中尚未提交的所有修改。

相关文章:

git diff命令详解

git diff 是 Git 中非常常用的命令,用于比较不同版本的文件改动。可以比较工作区、暂存区、或者提交之间的差异。下面是对 git diff 常用场景的详细解释: 1. git diff 当你执行 git diff 时,它会显示工作区与暂存区之间的差异,也…...

Vue 插槽:组件通信的“隐形通道”

在 Vue 中,插槽(slot)是实现组件内容分发的机制,允许我们将子组件的内容传递给父组件,从而提升组件的可复用性和灵活性。插槽的本质是通过将父组件内容传递到子组件指定的插槽位置,使得子组件在渲染时可以动…...

react1816中的setState同步还是异步的深层分析

setState 是 react 中更新 UI 的唯一方法,其内部实现原理如下: 调用 setState 函数时,React 将传入的参数对象加入到组件的更新队列中。React 会调度一次更新(reconciliation),在调度过程中,Re…...

【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第七篇-体积纹理绘制】

我们前几篇已经完成了渲染部分,现在终于开始做动态绘制功能了 之前使用的是这样一个体积雾的切片图,那么现在要做的就是动态编辑它 首先,让我们简单了解一下它是如何运作的: 开始绘制画布以渲染目标,并将材质绘制到画…...

Linux的环境搭建

目录 1、linux的简单介绍 2、搭建linux环境 2.1 linux的环境安装 2.2 使用Xshell远程登入linux 2.2.1 Xshell免密登入 2.3 windows与Xshell与linux云服务器的关系 1、linux的简单介绍 linux操作系统 为 部分汇编 C语言编写 的操作系统 源代码公开(开源),官…...

WPF+Mvvm案例实战(五)- 自定义雷达图实现

文章目录 1、项目准备1、创建文件2、用户控件库 2、功能实现1、用户控件库1、控件样式实现2、数据模型实现 2、应用程序代码实现1.UI层代码实现2、数据后台代码实现3、主界面菜单添加1、后台按钮方法改造:2、按钮添加:3、依赖注入 3、运行效果4、源代码获…...

网络爬虫-Python网络爬虫和C#网络爬虫

爬虫是一种从互联网抓取数据信息的自动化程序,通过 HTTP 协议向网站发送请求,获取网页内容,并通过分析网页内容来抓取和存储网页数据。爬虫可以在抓取过程中进行各种异常处理、错误重试等操作,确保爬取持续高效地运行 1、Python网…...

如何有效解除TikTok账号间的IP关联

在当今社交媒体环境中,TikTok凭借其独特的短视频形式吸引了数以亿计的用户。对许多内容创作者而言,运营多个账号是获取更大曝光和丰富内容的有效策略。然而,如何避免这些账号之间的IP关联,以防止被平台识别并封禁,成为…...

Python自省机制

Python 自省机制 Python 自省(Introspection)是一种动态检查对象的能力,使得开发者可以在运行时获取对象的相关信息,比如属性、方法、类型等。自省机制让 Python 具备了更强的动态性和灵活性,便于调试和开发。 自省&…...

wgan-gp 对连续变量 训练,6万条数据,训练结果不错,但是到局部的时候,拟合不好,是否可以对局部数据也进行计算呢

Wasserstein GAN with Gradient Penalty (WGAN-GP) 是一种改进的生成对抗网络(GAN),它通过引入梯度惩罚来改进训练过程,从而提高生成模型的稳定性和质量。如果你在使用WGAN-GP对连续变量进行训练时,发现整体训练结果不…...

python 制作 发货单 (生成 html, pdf)

起因, 目的: 某个小店,想做个发货单。 过程: 先写一个 html 模板。准备数据, 一般是从数据库读取,也可以是 json 格式,或是 python 字典。总之,是数据内容。使用 jinja2 来渲染模板。最终的结果可以是 h…...

GeoWebCache1.26调用ArcGIS切片

常用网址: GeoServer GeoWebCache (osgeo.org) GeoServer 用户手册 — GeoServer 2.20.x 用户手册 一、版本需要适配:Geoserver与GeoWebCache、jdk等的版本适配对照 ​ 查看来源 二、准备工作 1、数据:Arcgis标准的切片,通过…...

深度学习-卷积神经网络-基于VGG16模型, 实现猫狗二分类(文末附带数据集下载链接, 长期有效)

简介: 1.基于VGG16模型进行特征提取, 结合mlp实现猫狗二分类 2.训练数据--"dog_cat_class\training_set" 3.模型训练流程 1.对图像数据进行导入和预处理 2.搭建模型, 导入VGG16模型, 去除mlp层, 将经过VGG16训练后的数据作为输入, 输入到自建的mlp层中进行训练, 要…...

计算Java集合占用的空间【详解】

以ArrayList为例,假设集合元素类型是Person类型,假设集合容量为10,目前有两个person对象{name:“Jack”,age12} {name:“Tom”,age14} public class Person{private String name;private int age; }估算Person对象占用的大小: 对…...

仕考网:关于中级经济师考试的介绍

中级经济师考试是一种职称考试,每年举办一次,报名时间在7-8月,考试时间在10-11月 报名入口:中guo人事考试网 报名条件: 1.高中毕业并取得初级经济专业技术资格,从事相关专业工作满10年; 2.具备大学专科…...

SYN590RL 300MHz至450MHz ASK接收机芯片IC

一般描述 SYN590RL是赛诺克全新开发设计的一款宽电压范围,低功耗,高性能,无需外置AGC电容,灵敏度达到典型-110dBm,300MHz”450MHz 频率范围应用的单芯片ASK或OOK射频接收器。 SYN59ORL是一款典型的即插即用型单片高集成度无线接收器&…...

15分钟学 Go 第 20 天:Go的错误处理

第20天:Go的错误处理 目标 学习如何处理错误,以确保Go程序的健壮性和可维护性。 1. 错误处理的重要性 在开发中,错误处理至关重要。程序在运行时可能会出现各种问题,例如文件未找到、网络连接失败等。正确的错误处理能帮助我们…...

C++——string的模拟实现(上)

目录 引言 成员变量 1.基本框架 成员函数 1.构造函数和析构函数 2.拷贝构造函数 3.容量操作函数 3.1 有效长度和容量大小 3.2 容量操作 3.3 访问操作 (1)operator[]函数 (2)iterator迭代器 3.4 修改操作 (1)push_back()和append() (2)operator函数 引言 在 C—…...

JavaCV 之均值滤波:图像降噪与模糊的权衡之道

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,…...

桥接模式,外界与主机通,与虚拟机不通

一 二 在此选择Windows与外界连接的网卡,通过有线连就选有线网卡,通过无线连就选无线网卡。 三 如果需要设置固定IP,则选择"Manual"进行设置。我这边根据实际需要,走无线的时候用DHCP,走有线的时候设固定IP…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...