当前位置: 首页 > news >正文

鲸鱼优化算法(Whale Optimization Algorithm, WOA)原理与MATLAB例程

在这里插入图片描述

鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种基于鲸鱼捕食行为的智能优化算法。它模拟了座头鲸在狩猎时的“气泡网”捕食策略。

文章目录

  • 1.适应度函数
    • 2. 更新公式
    • 2.1 突袭行为
    • 2.2 螺旋更新
    • 3.线性递减参数
    • 4. 边界处理
  • MATLAB 实现示例
  • 代码说明
  • 注意事项

1.适应度函数

在优化问题中,适应度函数通常是我们希望最优化的目标函数。例如,Rosenbrock函数的公
式为:

f ( x ) = ∑ i = 1 n − 1 [ 100 ⋅ ( x i + 1 − x i 2 ) 2 + ( 1 − x i ) 2 ] f(x)=\sum\limits_{i=1}^{n-1}\begin{bmatrix}100\cdot(x_{i+1}-x_i^2)^2+(1-x_i)^2\end{bmatrix} f(x)=i=1n1[100(xi+1xi2)2+(1xi)2]

2. 更新公式

2.1 突袭行为

在突袭行为中,鲸鱼的位置更新公式为:

D = ∣ C ⋅ X ∗ − X i ∣ D=|C\cdot X^*-X_i| D=CXXi

X i = X ∗ − A ⋅ D X_i=X^*-A\cdot D Xi=XAD

其中:

∙ \bullet X ∗ X^* X是当前最佳位置。
· A A A是一个控制参数,定义为:

A = 2 a ⋅ r − a A=2a\cdot r-a A=2ara

∙ C \bullet C C是随机数,定义为:

C = 2 ⋅ r a n d ( ) C=2\cdot rand() C=2rand()

· D D D是当前鲸鱼与最佳位置之间的距离。

2.2 螺旋更新

在螺旋更新中,鲸鱼的位置更新公式为:

X i = D ⋅ e ( i ⋅ 2 π ) + X ∗ X_i=D\cdot e^{(i\cdot2\pi)}+X^* Xi=De(i2π)+X

其中:

· D D D是与最佳位置的距离,计算为:

D = ∣ X ∗ − X i ∣ D=\begin{vmatrix}X^*-X_i\end{vmatrix} D= XXi

3.线性递减参数

在算法迭代过程中,参数 a a a逐渐减小,以影响鲸鱼的探索行为:

a = 2 − ( 2 m a x i t e r ⋅ i t e r ) a=2-\left(\frac{2}{max_iter}\cdot iter\right) a=2(maxiter2iter)

4. 边界处理

在更新位置后,确保鲸鱼的位置在设定的边界内:

X i = max ⁡ ( min ⁡ ( X i , u b ) , l b ) X_i=\max(\min(X_i,ub),lb) Xi=max(min(Xi,ub),lb)

下面是一个简单的MATLAB实现示例,展示如何使用鲸鱼优化算法进行函数优化。我们将以最小化一个简单的目标函数(例如, R o s e n b r o c k Rosenbrock Rosenbrock函数)为例。

MATLAB 实现示例

% Whale Optimization Algorithm (WOA) for Function Optimization% 设置参数
max_iter = 100; % 最大迭代次数
num_whales = 30; % 鲸鱼数量
dim = 2; % 问题维度
lb = -5; % 下界
ub = 5; % 上界% 初始化鲸鱼位置
whales = lb + (ub - lb) * rand(num_whales, dim);% 初始化最佳解
best_score = inf;
best_position = zeros(1, dim);% 目标函数:Rosenbrock函数
target_function = @(x) sum(100*(x(:,2) - x(:,1).^2).^2 + (1 - x(:,1)).^2);% 主循环
for iter = 1:max_iterfor i = 1:num_whales% 计算当前鲸鱼的位置的目标函数值fitness = target_function(whales(i, :));% 更新最佳解if fitness < best_scorebest_score = fitness;best_position = whales(i, :);endend% 更新鲸鱼位置a = 2 - iter * (2 / max_iter); % 线性递减参数for i = 1:num_whales% 选择随机鲸鱼r = rand();A = 2 * a * rand() - a; % 计算A值C = 2 * rand(); % 计算C值if rand() < 0.5% 突袭行为if abs(A) < 1% 更新位置D = abs(C * best_position - whales(i, :));whales(i, :) = best_position - A .* D;else% 随机位置random_whale = whales(randi(num_whales), :);D = abs(C * random_whale - whales(i, :));whales(i, :) = random_whale - A .* D;endelse% 螺旋更新distance_to_best = abs(best_position - whales(i, :));whales(i, :) = distance_to_best * exp(1i * 2 * pi * rand()) + best_position;end% 限制位置在边界内whales(i, :) = max(min(whales(i, :), ub), lb);end% 显示当前迭代的最佳结果disp(['Iteration ' num2str(iter) ': Best Score = ' num2str(best_score)]);
end% 显示最终结果
disp(['Global Best Position: ' num2str(best_position)]);
disp(['Global Best Score: ' num2str(best_score)]);

代码说明

  1. 参数设置

    • max_iter:最大迭代次数。
    • num_whales:鲸鱼的数量。
    • dim:问题的维度(此例中为2维)。
    • lbub:搜索空间的上下界。
  2. 初始化

    • 随机生成鲸鱼的位置。
  3. 目标函数

    • 使用Rosenbrock函数作为优化目标。
  4. 主循环

    • 计算每只鲸鱼的适应度,并更新最佳解。
    • 根据鲸鱼的行为(突袭行为和螺旋更新)更新鲸鱼的位置。
    • 确保鲸鱼的位置在设定的边界内。
  5. 结果输出

    • 每次迭代输出当前最佳适应度,并在最后输出全局最佳位置和适应度。

注意事项

  • 可以根据需要调整参数以实现不同的优化效果。
  • 目标函数可以替换为其他需要优化的函数。
  • 增加绘图功能可以更直观地展示优化过程。

相关文章:

鲸鱼优化算法(Whale Optimization Algorithm, WOA)原理与MATLAB例程

鲸鱼优化算法&#xff08;Whale Optimization Algorithm, WOA&#xff09;是一种基于鲸鱼捕食行为的智能优化算法。它模拟了座头鲸在狩猎时的“气泡网”捕食策略。 文章目录 1.适应度函数2. 更新公式2.1 突袭行为2.2 螺旋更新3.线性递减参数4. 边界处理 MATLAB 实现示例代码说明…...

MFC七段码显示实例

在MFC中添加iSenvenSegmentAnalogX控件&#xff0c;添加编辑框和按钮实现在编辑框中输入数字点击按钮后数字用七段码显示 1、在对话框中点击右键如下图添加控件和变量 2、在sevenDlg.h中添加代码 public: void ShowInd(int,double);3、在sevenDlg.cpp中添加代码 void CSe…...

【日常知识点】到底推不推荐用JWT?

👉博主介绍: 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO 专家博主 ⛪️ 个人社区:个人社区 💞 个人主页:个人主页 🙉 专栏地址: ✅ Java 中级 🙉八股文专题:剑指大厂,手撕 J…...

网络编程项目之FTP服务器

项目介绍 模拟FTP核心原理&#xff1a;客户端连接服务器后&#xff0c;向服务器发送一个文件。文件名可以通过参数指定&#xff0c;服务器端接收客户端传来的文件&#xff08;文件名随意&#xff09;&#xff0c;如果文件不存在自动创建文件&#xff0c;如果文件存在&#xff0…...

SpringBoot02:第一个springboot程序

3、第一个springboot程序 3.1、准备工作 我们将学习如何快速的创建一个Spring Boot应用&#xff0c;并且实现一个简单的Http请求处理。通过这个例子对Spring Boot有一个初步的了解&#xff0c;并体验其结构简单、开发快速的特性。 我的环境准备&#xff1a; java version "…...

快速入门HTML

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗 如有错误&#xff0c;欢迎指出~ 目录 第一个html文件 标签 h1~h6 p >段落标签 br > 换行标签 img >图片标签 a >超链接标签 表格标签 表单标签 表单控件 form表单 ⽆语义标签:div&span 综…...

RabbitMQ是一个开源的消息代理和队列服务器

RabbitMQ是一个开源的消息代理和队列服务器&#xff0c;它基于AMQP&#xff08;Advanced Message Queuing Protocol&#xff0c;高级消息队列协议&#xff09;协议实现&#xff0c;同时也支持其他消息协议如STOMP、MQTT等。作为一个可靠的消息传递服务&#xff0c;RabbitMQ在分…...

经典算法思想--并查集

前言 &#xff08;最近在学习Java&#xff0c;所有函数都是用Java语言来书写的&#xff09;前言部分是一些前提储备知识 在并查集&#xff08;Union-Find&#xff09;数据结构中&#xff0c;rank&#xff08;中文称为“秩”&#xff09;是用来表示树的高度或深度的一种辅助信息…...

挑战Java面试题复习第2天,百折不挠

挑战第 2 天 ArrayList和linkedList的区别HashMap和HashTable的区别Collection 与 Collections 的区别Java的四种引用泛型常用特点 ArrayList和linkedList的区别 底层数据结构&#xff1a; ArrayList&#xff1a;基于动态数组实现&#xff0c;支持快速随机访问。LinkedList&a…...

【vue之道】

vue之道 1. 一生二&#xff0c;二生万物思想2. 变化之律3. 变化之实在哪&#xff1f;4.而后学于形乃已&#xff01;4.1 展示之形变4.2 动之气谓之指令4.3 血之养分的载体&#xff0c;于vue之绑定载具4.4 vue之道&#xff08;万法规一篇&#xff09; 1. 一生二&#xff0c;二生万…...

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型

往期精彩内容&#xff1a; 时序预测&#xff1a;LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享&#xff01; EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现&#xff08;一&#xff09;EMD-CSDN博客 EMD、EEM…...

Linux:指令再认识

文章目录 前言一、知识点1. Linux下一切皆文件&#xff0c;也就是说显示器也是一种文件2. 指令是什么&#xff1f;3. ll 与 ls -l4. 日志5. 管道6. 时间戳 二、基本指令1. man指令2. cp指令3. mv指令4. 查看文件1&#xff09;cat/tac指令——看小文件2&#xff09;more/less指令…...

PHP如何抛出和接收错误

在PHP中&#xff0c;抛出和接收错误通常涉及异常处理机制&#xff0c;以及错误和异常的处理函数。以下是如何在PHP中抛出和接收错误的详细指南&#xff1a; 抛出错误&#xff08;异常&#xff09; 在PHP中&#xff0c;你可以使用throw关键字来抛出一个异常。这通常在你检测到…...

计算机网络:网络层 —— IPv4 地址的应用规划

文章目录 IPv4地址的应用规划定长的子网掩码变长的子网掩码 IPv4地址的应用规划 IPv4地址的应用规划是指将给定的 IPv4地址块 (或分类网络)划分成若干个更小的地址块(或子网)&#xff0c;并将这些地址块(或子网)分配给互联网中的不同网络&#xff0c;进而可以给各网络中的主机…...

Mongodb命令大全

Mongodb命令大全 一、数据库相关命令二、集合相关命令三、文档(数据)相关命令1、_id 字段说明2、查询2.1、 查询操作符2.2、内嵌文档查询2.3、数组文档查询2.4、去重查询2.5、查询排序 sort2.6、分页查询2.7、指定列投影查询返回2.8、查询统计个数 count 3、聚合查询3.1、查询用…...

宇视设备视频平台EasyCVR视频融合平台果园/鱼塘/养殖场/菜园有电没网视频监控方案

在那些有电无网的偏远地区&#xff0c;如果园、鱼塘、养殖场或菜园&#xff0c;视频监控的实现面临着独特的挑战。宇视设备视频平台EasyCVR提供了一种创新的解决方案&#xff0c;通过结合太阳能供电和4G摄像头技术&#xff0c;有效地解决了这些场景下的监控需求。 在有电没网的…...

面试题:ABCD四个线程,A线程最后执行

我觉得是一个很高频的面试题&#xff0c;ABCD四个线程&#xff0c;A线程要等到BCD线程执行完再执行&#xff0c;怎么做 因为我刚复习完AQS&#xff0c;所以立马想到了CountDownLatch&#xff0c;但是看面试官反应他最想听到的应该是join方法&#xff0c;所以面试后就总结了几种…...

代码随想录算法训练营第46期Day43

leetcode.322零钱兑换 class Solution { public: //无限个硬币->完全背包int coinChange(vector<int>& coins, int amount) {vector<int> dp(10010,INT_MAX);//dp代表的在某个数值下最小的硬币数&#xff0c;要求是最小的硬币数&#xff0c;所以初始值要尽可…...

前端处理API接口故障:多接口自动切换的实现方案

因为在开发APP&#xff0c;一个接口如果不通&#xff08;被挂了&#xff09;又不能改了重新打包让用户再下载软件更新&#xff0c;所以避免这种情况&#xff0c;跟后端讨论多备用接口地址自动切换的方案&#xff0c;自动切换到备用的接口地址&#xff0c;并保证后续所有的请求都…...

多租户架构的全景分析(是什么?基本概念、实现策略、资源管理和隔离、数据安全与隔离、性能优化、扩展性与升级、案例研究)

文章目录 1. 多租户的基本概念2. 多租户的实现策略2.1 独立数据库模式2.2 共享数据库-独立Schema模式2.3 共享数据库-共享Schema模式 3. 资源管理和隔离4. 数据安全与隔离5. 性能优化6. 扩展性与升级7. 案例研究总结 多租户架构在云计算和SaaS应用中越来越流行&#xff0c;因为…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

验证redis数据结构

一、功能验证 1.验证redis的数据结构&#xff08;如字符串、列表、哈希、集合、有序集合等&#xff09;是否按照预期工作。 2、常见的数据结构验证方法&#xff1a; ①字符串&#xff08;string&#xff09; 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称&#xff1a;Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号&#xff1a;CVE-2023-25194 CVSS评分&#xff1a;8.8 影响版本&#xff1a;Apache Kafka 2.3.0 - 3.3.2 修复版本&#xff1a;≥ 3.4.0 漏洞类型&#xff1a;反序列化导致的远程代…...

Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用

Linux 内存管理调试分析&#xff1a;ftrace、perf、crash 的系统化使用 Linux 内核内存管理是构成整个内核性能和系统稳定性的基础&#xff0c;但这一子系统结构复杂&#xff0c;常常有设置失败、性能展示不良、OOM 杀进程等问题。要分析这些问题&#xff0c;需要一套工具化、…...

十二、【ESP32全栈开发指南: IDF开发环境下cJSON使用】

一、JSON简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;具有以下核心特性&#xff1a; 完全独立于编程语言的文本格式易于人阅读和编写易于机器解析和生成基于ECMAScript标准子集 1.1 JSON语法规则 {"name"…...