深入解析 OceanBase 数据库中的局部索引和全局索引
深入解析 OceanBase 数据库中的局部索引和全局索引
引言
在分布式数据库中,索引的设计对于优化查询性能至关重要。OceanBase 作为一款高性能的分布式关系数据库,支持局部索引和全局索引两种索引类型。理解这两种索引的特点和适用场景,对于数据库开发人员提高系统性能、减少维护成本具有重要意义。
一、局部索引和全局索引的基本概念
1. 局部索引(Local Index)
局部索引是基于主表的分区而创建的索引,每个分区都有自己独立的索引段。索引的数据存储与主表的分区数据相对应,索引的分区方式与主表完全一致。这意味着当查询包含分区键时,数据库只需访问相关分区,提高了查询效率。
2. 全局索引(Global Index)
全局索引是跨越所有分区的索引,覆盖整个表的数据。它可以是非分区的,也可以采用与主表不同的分区规则。全局索引在某些查询场景下可以提供更好的性能,但其维护成本通常高于局部索引。
二、局部索引和全局索引的主要区别
- 分区规则:局部索引的分区规则与主表相同,全局索引则可以采用不同的分区规则。
- 物理存储位置:局部索引与主表分区存储在同一物理位置,全局索引的物理位置可能与主表不同,除非将其与主表指定在同一表组中。
- 维护成本:全局索引在数据更新、分区管理等操作中需要更多的维护工作,可能引入分布式事务,增加系统开销。
三、使用场景分析
1. 局部索引的适用场景
-
分区规则相同且分区数相同:当全局索引的分区规则与主表一致,且分区数量相同时,推荐使用局部索引。
- 维护代价更小:局部索引的维护仅涉及对应的分区,避免了全局索引在跨分区时需要的复杂维护操作。
- 物理位置一致:索引与数据存储在同一分区,提高了数据访问的本地性,减少了网络延迟。
-
查询条件包含完整的分区键:如果查询条件中包含了完整的分区键,局部索引能够直接定位到对应的分区,查询效率最高。
2. 全局索引的适用场景
-
数据量较大或容易出现索引热点:当数据量非常庞大时,单个索引的维护和查询成本会显著增加。通过创建全局分区索引,可以将索引数据分布在多个分区或节点上,减少单个节点或分区的压力,提高查询和维护的效率。此外,当某些分区或索引键值被频繁访问,导致资源集中消耗,形成所谓的“索引热点”时,创建全局分区索引可以将数据更均匀地分布在多个节点上,避免热点问题,提升系统的整体性能。
-
高频且精准命中的查询:对于需要高频访问特定记录的查询(如单记录查询),全局索引可以加速查询,减少 I/O 操作。这是因为全局索引覆盖了整个表的数据,而不局限于某个分区。当查询条件中没有包含分区键时,局部索引可能无法高效地定位到目标记录,需要在多个分区中扫描。而全局索引则可以直接查找到目标数据,无需跨分区访问,显著减少 I/O 操作并加快查询速度。对于需要频繁访问单条记录的场景,全局索引的这种特性可以极大地提升查询效率。
四、性能与维护成本比较
1. 范围查询性能
- 局部索引:在范围查询中,如果查询条件包含分区键,局部索引可以高效地在指定分区内执行,性能更优。
- 全局索引:对于不包含分区键的范围查询,全局索引可以跨分区查找,可能提供更好的性能。
2. DML 操作的开销
- 全局索引的额外开销:全局索引在数据更新(DML)操作中会引入额外的维护成本。
- 跨机分布式事务:由于全局索引可能分布在不同的物理节点,数据更新时需要处理跨节点的分布式事务,增加了系统的复杂性。
- 事务数据量影响:事务的数据量越大,分布式事务的处理就越复杂,可能导致性能下降。
五、最佳实践与建议
1. 根据查询模式选择索引类型
- 优先使用局部索引:如果查询主要基于分区键,局部索引可以提供最佳性能,且维护成本较低。
- 慎重使用全局索引:在需要支持不包含分区键的高频查询时,可以考虑全局索引,但需权衡其带来的维护开销。
2. 考虑数据分布和访问模式
- 避免索引热点:在可能出现数据或索引热点的情况下,使用全局分区索引并选择合适的分区策略,可以平衡负载。
- 优化分区策略:根据业务需求,设计合理的分区策略,使得数据和索引的访问尽可能均匀分布。
六、结论
局部索引和全局索引在 OceanBase 数据库中各有优劣。局部索引适合包含分区键的查询,维护成本低,但在跨分区查询中表现一般。全局索引适合不包含分区键的高频查询,可以提升查询性能,但会增加维护复杂度,特别是在 DML 操作中引入额外的分布式事务开销。
在实际应用中,数据库开发人员应根据具体的业务场景和查询模式,权衡选择合适的索引类型。合理的索引设计可以显著提升数据库的性能,降低系统的整体开销。
相关文章:
深入解析 OceanBase 数据库中的局部索引和全局索引
深入解析 OceanBase 数据库中的局部索引和全局索引 引言 在分布式数据库中,索引的设计对于优化查询性能至关重要。OceanBase 作为一款高性能的分布式关系数据库,支持局部索引和全局索引两种索引类型。理解这两种索引的特点和适用场景,对于数…...

2024防晒衣市场社媒营销洞察报告
2024年,硬防晒已经从单一的户外场景,扩展到通勤、外出游玩、穿搭等更多场景,多样化的需求导致的消费群体不断扩大,“防晒经济”迎来自己的主场时刻。 当前,防晒衣不仅需要满足不用场景的灵活切换,还要满足多…...

【Ubuntu20.04 Visual Studio Code安装】【VSCODE】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、打开VSCOE官网二、下载VSODE的Ubuntu版本三、安装VSCODE软件包四、导入工作空间(添加工作空间目录)五、安装插件:1.安装简体中文包2.安装ros插件…...

贪心算法day(1)
1.将数组和减半的最少操作次数 链接:. - 力扣(LeetCode) 思路:创建大跟堆将最大的数进行减半 注意点:double t queue.poll()会将queue队列数字减少一个后再除以2,queue.offer(queue.poll()/…...
窗口函数sql使用总结
一、开窗 基础知识:窗口分析函数 (1)LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值 第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往…...
python单因素分析
写了个简易小程序实现,以后用的时候直接复制就行: import numpy as np from scipy.stats import fdatas [[65,60,69,79,38,68,54,67,68,43],[74,71,58,49,58,49,48,68,56,47],[22,34,24,21,20,36,36,31,28,33] ] a 0.05def get_mean_var(data):data_m…...

「C/C++」C++ STL容器库 之 std::list 双向链表容器
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...
应用程序框架进阶<HarmonyOS第一课>
一、判断题 1. 一个应用是由一个或多个HAP组成。 正确(True) 错误(False) 正确(True) 回答正确 2. UIAbility组件多实例启动模式是默认的启动模式。 正确(True)错误(False) 错误(False) 回答正确 二、单选题 1. 以下关于指定实例启动模式说法正确的是? …...

【C++】vector<string>-动态数组存储多个string
#1024程序员节 | 征文# //demo #include <iostream> #include <vector> #include <string>using namespace std; int main() {// 创建一个存储字符串的向量vector<string> Record;// 向向量中添加字符串Record.push_back("example");Record…...

66Analytics 汉化版,网站统计分析源码,汉化前台后台
66Analytics 汉化版,网站统计分析源码,汉化前台后台 本源码汉化前台后台,非其他只汉化前台版 网络分析变得容易。自托管、友好、一体化的网络分析工具。轻量级跟踪、会话回放、热图、用户旅程等 简单、好看、友好-大多数网络分析解决方案做得太多了,在大…...

蓝桥杯单片机STC15F2K60S2第十四届省赛代码详细讲解(附完整代码)
本文是写第十四届的蓝桥杯省赛代码,新手教程作者也写了一篇,欢迎去观看作者专门为新手写的一篇。也欢迎收录该专栏。 蓝桥杯单片机STC15F2K60S2第十三届省赛代码详细讲解(附完整代码) 专栏: 蓝桥杯单片机 然后接下来…...

[免费]SpringBoot+Vue智慧校园(校园管理)系统[论文+源码+SQL脚本]
大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue智慧校园(校园管理)系统,分享下哈。 项目视频演示 【免费】SpringBootVue智慧校园(校园管理)系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 随着信息技术的迅猛发展,…...

景区导航地图怎么实现?基于LBS与3D GIS的智慧景区导航导览系统技术路线
随着经济的发展和人们物质生活水平改善,居民的旅游需求呈现多元化和个性化,自助旅游的人越来越多。许多游客在旅游行程中需要随时随地了解旅游景点有关的各类信息,如旅游景点介绍、推荐路线、地图导航等,合理规划和安排旅游线路。正是为了应对…...

RedisIO多路复用
一、多路复用要解决的问题: 并发多客户端连接,在多路复用之前的处理方案是同步阻塞网络IO模型,这种模型的特点就是用一个进程来处理一个网络连接。优点在于比较简单,缺点在于性能较差,每个用户请求到来都得占用一个进程来处理&am…...

C++的相关习题(2)
初阶模板 下面有关C中为什么用模板类的原因,描述错误的是? ( ) A.可用来创建动态增长和减小的数据结构 B.它是类型无关的,因此具有很高的可复用性 C.它运行时检查数据类型,保证了类型安全 D.它是平台无关的,可移植…...

C++《vector的模拟实现》
在之前《vector》章节当中我们学习了STL当中的vector基本的使用方法,了解了vector当中各个函数该如何使用,在学习当中我们发现了vector许多函数的使用是和我们之前学习过的string类的,但同时也发现vector当中一些函数以及接口是和string不同的…...

无人机避障——路径规划篇(一) JPS跳点搜索算法A*算法对比
JSP 跳点搜索算法与改进 A*算法对比 一、算法概述: 跳点搜索(Jump Point Search,JPS)算法:一种用于路径规划的启发式搜索算法。它主要用于在网格地图(如游戏地图、机器人运动规划地图等)中快速找到从起点到终点的最短路径。该算法在改进 A*算法的基础上进行了优化,通过跳过一…...

OpenCV ORB角点检测匹配和偏移计算
OpenCV ORB角点检测匹配和偏移计算 1. 简介2. ORB角点检测匹配和偏移计算2.1. 创建平移图片2.2. ORB角点检测2.3. ORB角点匹配2.4. 计算变换矩阵 1. 简介 首先通过 cv2.ORB_create 创建ORB检测器 orb, 然后通过 orb.detectAndCompute 检测两张图片获得ORB角点&…...

图文详解ChatGPT-o1完成论文写作的全流程
学境思源,一键生成论文初稿: AcademicIdeas - 学境思源AI论文写作 本月中旬OpenAI发布了OpenAI o1系列新的AI模型。 据OpenAI介绍,这些模型旨在花更多时间思考后再做出反应,就像人一样。通过训练,它们学会改进思维过…...

在线体验Sketch中文版,免费下载即刻上手!
Sketch是一款轻量而高效的矢量设计工具,助力全球设计师创造了诸多惊艳作品。安装Sketch的优势主要体现在其矢量编辑、控件和样式功能上。而下载安装“Sketch中文版”即时设计同样出色,它作为一站式设计平台,功能更全面。即时设计拥有纯中文的…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践
在电商行业蓬勃发展的当下,多平台运营已成为众多商家的必然选择。然而,不同电商平台在商品数据接口方面存在差异,导致商家在跨平台运营时面临诸多挑战,如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...
Git 命令全流程总结
以下是从初始化到版本控制、查看记录、撤回操作的 Git 命令全流程总结,按操作场景分类整理: 一、初始化与基础操作 操作命令初始化仓库git init添加所有文件到暂存区git add .提交到本地仓库git commit -m "提交描述"首次提交需配置身份git c…...

性能优化中,多面体模型基本原理
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中࿰…...

如何优雅地绕过限制调用海外AI-API?反向代理与API中转技术详解
阅读时长 | 8分钟 适用读者 | 需要跨境调用OpenAI等AI服务的开发者/企业 一、问题背景:为什么需要代理? 最近在技术社区看到这样的求助: "公司服务器在国内,但业务需要调用OpenAI接口,直接访…...