G2 基于生成对抗网络(GAN)人脸图像生成
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
基于生成对抗网络(GAN)人脸图像生成
这周将构建并训练一个生成对抗网络(GAN)来生成人脸图像。
GAN 原理概述
生成对抗网络通过两个神经网络的对抗性结构来实现目标:
- 生成器(G):输入随机噪声,通过学习数据的分布模式生成类似真实图像的输出。
- 判别器(D):用来判断输入的图像是真实的还是生成器生成的。
训练过程中,生成器尝试欺骗判别器,生成逼真的图像,而判别器则不断优化,以区分真实图像与生成图像。这种对抗过程最终使生成器的生成能力逐渐逼近真实图像。
环境准备
首先导入相关库并设置随机种子以确保结果的可复现性。
import random
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import matplotlib.pyplot as plt
import numpy as np
超参数设置
在训练GAN之前,首先定义一些关键的超参数:
- batch_size:每个批次的样本数。
- image_size:图像的大小,用于调整输入数据的尺寸。
- nz:潜在向量大小,即生成器的输入维度。
- ngf 和 ndf:分别控制生成器和判别器中的特征图数量。
- num_epochs:训练的总轮数。
- lr:学习率。
batch_size = 128
image_size = 64
nz = 100
ngf = 64
ndf = 64
num_epochs = 50
lr = 0.0002
beta1 = 0.5
数据加载
通过torchvision.datasets.ImageFolder
加载数据,并使用 torch.utils.data.DataLoader
进行批量处理。数据加载时,通过转换函数调整图像大小,并对其进行归一化处理。
dataroot = "data/GANdata"
dataset = dset.ImageFolder(root=dataroot,transform=transforms.Compose([transforms.Resize(image_size),transforms.CenterCrop(image_size),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
网络结构定义
1. 生成器
生成器将随机噪声(潜在向量)通过一系列转置卷积层转换为图像。每层使用ReLU激活函数,最后一层用Tanh激活函数,将输出限制在 [-1, 1]
。
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.main = nn.Sequential(nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),nn.BatchNorm2d(ngf * 8),nn.ReLU(True),nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 4),nn.ReLU(True),nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 2),nn.ReLU(True),nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf),nn.ReLU(True),nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),nn.Tanh())def forward(self, input):return self.main(input)
2. 判别器
判别器为卷积网络,通过一系列卷积层提取图像特征。每层使用LeakyReLU激活函数,最终输出一个值(真实为1,生成为0)。
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Conv2d(3, ndf, 4, 2, 1, bias=False),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 2),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 4),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 8),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),nn.Sigmoid())def forward(self, input):return self.main(input)
训练过程
训练分为两个部分:判别器和生成器的更新。
1. 判别器的训练
判别器首先接收真实图像样本,计算输出与真实标签的误差。然后判别器接收生成器生成的假图像,再计算输出与假标签的误差。最终判别器的损失是两者的总和。
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()fake = netG(noise)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label.fill_(fake_label))
errD_fake.backward()
2. 生成器的训练
生成器的目标是欺骗判别器,因此其损失函数基于判别器将生成图像误识为真实的概率值。
output = netD(fake).view(-1)
errG = criterion(output, label.fill_(real_label))
errG.backward()
训练监控与可视化
训练时,我们记录生成器和判别器的损失,并生成一些样本图像来查看生成器的效果。
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig('Generator and Discriminator Loss During Training.png')
结果可视化
训练结束后,我们将真实图像与生成图像对比,以检验生成器的效果。
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(), (1, 2, 0)))plt.subplot(1, 2, 2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1], (1, 2, 0)))
plt.savefig('Fake Images.png')
plt.show()
总结
这周学习构建了一个深度卷积生成对抗网络(DCGAN),用于生成逼真的人脸图像,通过这周学习对对抗网路的构建有了更深的了解与运用
相关文章:

G2 基于生成对抗网络(GAN)人脸图像生成
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 基于生成对抗网络(GAN)人脸图像生成 这周将构建并训练一个生成对抗网络(GAN)来生成人脸图像。 GAN 原理概述 …...
R学习笔记-单因素重复测量方差分析
R语言之重复测量方差分析——ezANOVA的使用与解析 - 知乎 单因素重复测量方差分析(One-Way Repeated Measures ANOVA)——R软件实现 - 梦特医数通 ### 清空environment rm(list ls()) ### 加载包 if (!require("tidyverse")) install.packages("tidyverse&quo…...

HTML练习题:彼岸的花(web)
展示效果: 代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>彼岸の花</title><style…...

(蓝桥杯C/C++)——常用库函数
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 一、 二分查找 1.二分查找的前提 2.binary_ search函数 3.lower_bound和upper_bound 二、排序 1.sort概念 2.sort的用法 3.自定义比较函数 三、全排列 1.next p…...

GPT-Sovits-2-微调模型
1. 大致步骤 上一步整理完数据集后,此步输入数据, 微调2个模型VITS和GPT,位置在 <<1-GPT-SoVITS-tts>>下的<<1B-微调训练>> 页面的两个按钮分别执行两个文件: <./GPT_SoVITS/s2_train.py> 这一步微调VITS的预训练模型…...
【数据结构 | PTA】懂蛇语
懂蛇语 在《一年一度喜剧大赛》第二季中有一部作品叫《警察和我之蛇我其谁》,其中“毒蛇帮”内部用了一种加密语言,称为“蛇语”。蛇语的规则是,在说一句话 A 时,首先提取 A 的每个字的首字母,然后把整句话替换为另一…...

Python——自动化发送邮件
在数字化时代,电子邮件是商务沟通和个人联络的重要工具。自动化邮件发送可以节省时间,提高效率。Python,作为一种强大且灵活的编程语言,提供了多种库来支持邮件的自动化发送。本文将详细介绍如何使用Python的smtplib和email库来编…...

MTKLauncher_布局页面分析
文章目录 前言遇到的困难点针对性解决困难 需求相关资料Launcher3 源码 目录简单介绍Launcher3 简介及页面布局分析UI整体架构数据加载布局加载布局加载核心思想device_profiles.xml 加载InvariantDeviceProfileinitGrid(context, gridName)getPredefinedDeviceProfilesinvDist…...

C#实现隐藏和显示任务栏
实现步骤 为了能够控制Windows任务栏,我们需要利用Windows API提供的功能。具体来说,我们会使用到user32.dll中的两个函数:FindWindow和ShowWindow。这两个函数可以帮助我们找到任务栏窗口,并对其执行显示或隐藏的操作 引入命名空…...

基于springboot+vue实现的公司财务管理系统(源码+L文+ppt)4-102
基于springbootvue实现的公司财务管理系统(源码L文ppt)4-102 摘要 本系统是基于SpringBoot框架开发的公司财务管理系统,该系统包含固定资产管理、资产申领管理、资产采购管理、员工工资管理等功能。公司财务管理系统是一种帮助公司进行有效资金管理、会…...

rnn/lstm
tip:本人比较小白,看到july大佬的文章受益匪浅,现在其文章基础上加上自己的归纳、理解,以及gpt的答疑,如果有侵权会删。 july大佬文章来源:如何从RNN起步,一步一步通俗理解LSTM_rnn lstm-CSDN博…...

袋鼠云产品功能更新报告12期|让数据资产管理更高效
本期,我们更新和优化了数据资产平台相关功能,为您提供更高效的产品能力。以下为第12期袋鼠云产品功能更新报告,请继续阅读。 一、【元数据】重点更新 |01 元数据管理优化,支持配置表生命周期 之前系统中缺少一个可以…...

MATLAB——入门知识
内容源于b站清风数学建模 目录 1.帮助文档 2.注释 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 4.2.永久改 5.常用函数 6.易错点 1.帮助文档 doc sum help sum edit sum 2.注释 ctrl R/T 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 format lon…...

C#从零开始学习(用户界面)(unity Lab4)
这是书本中第四个unity Lab 在这次实验中,将学习如何搭建一个开始界面 分数系统 点击球,会增加分数 public void ClickOnBall(){Score;}在OneBallBehaviour类添加下列方法 void OnMouseDown(){GameController controller Camera.main.GetComponent<GameController>();…...

Axure PR 9 多级下拉清除选择器 设计交互
大家好,我是大明同学。 Axure选择器是一种在交互设计中常用的组件,这期内容,我们来探讨Axure中选择器设计与交互技巧。 OK,这期内容正式开始 下拉列表选择输入框元件 创建选择输入框所需的元件 1.在元件库中拖出一个矩形元件。…...
分布式项目pom配置
1. 父项目打包方式为 pom <packaging>pom</packaging> 2. 父项目版本配置 <properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><project.build.sourceEncod…...

2. Flink快速上手
文章目录 1. 环境准备1.1 系统环境1.2 安装配置Java 8和Scala 2.121.3 使用集成开发环境IntelliJ IDEA1.4 安装插件2. 创建项目2.1 创建工程2.1.1 创建Maven项目2.1.2 设置项目基本信息2.1.3 生成项目基本框架2.2 添加项目依赖2.2.1 添加Flink相关依赖2.2.2 添加slf4j-nop依赖2…...

Java-I/O框架06:常见字符编码、字符流抽象类
视频链接:16.16 字符流抽象类_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Tz4y1X7H7?spm_id_from333.788.videopod.episodes&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5&p16 1.常见字符编码 IOS-8859-1收录了除ASCII外,还包括西欧…...

计算机网络-MSTP的基础概念
前面我们大致了解了MSTP的由来,是为了解决STP/RSTP只有一根生成树导致的VLAN流量负载分担与次优路径问题,了解MSTP采用实例映射VLAN的方式实现多实例生成树,MSTP有很多的理论概念需要知道,其实与其它的知识一样理论复杂配置还好的…...
P1037 [NOIP2002 普及组] 产生数
[NOIP2002 普及组] 产生数 题目描述 给出一个整数 n n n 和 k k k 个变换规则。 规则: 一位数可变换成另一个一位数。规则的右部不能为零。 例如: n 234 , k 2 n234,k2 n234,k2。有以下两个规则: 2 ⟶ 5 2\longrightarrow 5 2⟶5。 …...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...