verilog实现一个5bit序列检测器
以下是用 Verilog 实现一个 5bit 序列检测器的代码:
module five_bit_sequence_detector(input clk,input reset,input [4:0] in,output reg detected
);// 定义状态参数localparam IDLE = 4'b0000;localparam STATE1 = 4'b0001;localparam STATE2 = 4'b0010;localparam STATE3 = 4'b0011;localparam STATE4 = 4'b0100;localparam DETECTED_STATE = 4'b0101;reg [3:0] current_state;reg [3:0] next_state;always @(posedge clk or posedge reset) beginif (reset) begincurrent_state <= IDLE;detected <= 1'b0;end else begincurrent_state <= next_state;if (current_state == DETECTED_STATE)detected <= 1'b1;elsedetected <= 1'b0;endendalways @(*) begincase (current_state)IDLE:if (in == 5'b00001)next_state = STATE1;elsenext_state = IDLE;STATE1:if (in == 5'b00010)next_state = STATE2;elsenext_state = IDLE;STATE2:if (in == 5'b00100)next_state = STATE3;elsenext_state = IDLE;STATE3:if (in == 5'b01000)next_state = STATE4;elsenext_state = IDLE;STATE4:if (in == 5'b10000)next_state = DETECTED_STATE;elsenext_state = IDLE;DETECTED_STATE:if (in == 5'b10000)next_state = DETECTED_STATE;elsenext_state = IDLE;default:next_state = IDLE;endcaseendendmodule
这个序列检测器检测特定的 5bit 序列 “00001”、“00010”、“00100”、“01000”、“10000”。当输入序列与这个特定序列匹配时,输出 detected
被置为高电平。状态机从初始状态 IDLE
开始,根据输入逐步进入不同的状态,直到检测到完整序列进入 DETECTED_STATE
。如果在任何状态下输入不匹配预期序列,状态机将回到 IDLE
状态重新开始检测。
相关文章:
verilog实现一个5bit序列检测器
以下是用 Verilog 实现一个 5bit 序列检测器的代码: module five_bit_sequence_detector(input clk,input reset,input [4:0] in,output reg detected );// 定义状态参数localparam IDLE 4b0000;localparam STATE1 4b0001;localparam STATE2 4b0010;localparam …...

Redis数据安全_持久化机制
由于Redis的数据都存放在内存中,如果没有配置持久化,Redis重启后数据就全丢失了,于是需要开启Redis的持久化功能,将数据保存到磁盘上,当Redis重启后,可以从磁盘中恢复数据。 持久化机制概述 对于Redis而言…...
什么是信息熵,什么是交叉熵,什么是KL散度?
什么是信息熵? 信息熵(Entropy)是信息论中的一个基本概念,用来衡量一个随机变量不确定性的大小。它反映了对一个事件结果的预测难度,或者说是描述这个事件需要多少“信息量”。信息熵是由香农(Claude Shan…...

开发者的福音:PyTorch 2.5现已支持英特尔独立显卡训练
《PyTorch 2.5重磅更新:性能优化新特性》中的一个新特性就是:正式支持在英特尔独立显卡上训练模型! PyTorch 2.5 独立显卡类型 支持的操作系统 Intel 数据中心GPU Max系列 Linux Intel Arc™系列 Linux/Windows 本文将在IntelCore™…...

Deep InfoMax(DIM)(2019-02-ICLR)
论文:LEARNING DEEP REPRESENTATIONS BY MUTUAL INFORMATION ESTIMATION AND MAXIMIZATION ABSTRACT 研究目标 研究通过最大化输入和深度神经网络编码器输出之间的互信息来进行无监督表示学习目的是学习到对下游任务有用的特征表示 核心发现:结构很重…...

2024年10月中国数据库排行榜:TiDB续探花,GaussDB升四强
10月中国数据库流行度排行榜如期发布,再次印证了市场分层的加速形成。国家数据库测评结果已然揭晓,本批次通过的产品数量有限,凸显了行业标准的严格与技术门槛的提升。再看排行榜,得分差距明显增大,第三名与后续竞争者…...

css边框修饰
一、设置线条样式 通过 border-style 属性设置,可选择的一些属性如下: dotted:点线 dashed:虚线 solid:实线 double:双实线 效果如下: 二、设置边框线宽度 ① 通过 border-width 整体设置…...
利用Python进行数据可视化:实用指南与推荐库
利用Python进行数据可视化:实用指南与推荐库 数据可视化是将数据转化为图形和图表的过程,它能够帮助我们更直观地理解数据的趋势、模式和关系。在Python中,有许多强大的库可用于数据可视化,从简单的折线图到复杂的交互式图表,应有尽有。本文将详细介绍Python数据可视化的…...

MobileNetv2网络详解
背景: MobileNet v1中DW卷积在训练完之后部分卷积核会废掉,大部分参数为“0” MobileNet v2网络是由Google团队在2018年提出的,相比于MobileNet v1网络,准确率更高,模型更小 网络亮点: Inverted Residu…...

惊了!大模型连这样的验证码都能读懂_java_识别验证码
最近在看视觉大模型的能力,然后用了某网站的一个验证码试了试,竟然连这样的验证码都能认识,这个有点夸张,尤其是这个9和6颠倒的都能理解,现在的能力已经这么牛了么 具体就是用了通义最新的qwen vl模型spring ai alibab…...

【小白学机器学习26】 极大似然估计,K2检验,logit逻辑回归(对数回归)(未完成----)
目录 1 先从一个例题出来,预期值和现实值的差异怎么评价? 1.1 这样一个问题 1.2 我们的一般分析 1.3 用到的关键点1 1.4 但是差距多远,算是远呢? 2 极大似然估计 2.1 极大似然估计的目的 2.1.1 极大似然估计要解决什么问题…...
【日常记录-Java】SLF4J扫描实现框架的过程
1. 简介 SLF4J(Simple Logging Facade for Java)作为一种简单的门面或抽象,服务于其他各种日志框架,例如JUL、log4j、logback等,核心作用有两项: 提供日志接口;提供获取具体日志对象的方法; 2. 扫描过程 …...

uni-app 获取 android 手机 IMEI码
1、需求来源 最近项目上需要获取手机的IMEI码,并且在更换手机号登录后,需要提示重新更新IMEI码。 2、需求拆分 2.1 获取 IMEI 码 查阅 uni-app 官网发现在android 10 已经无法获取imei码,所以对于这个需求拆分成两种情况。 第一种情况&am…...

后台管理系统的通用权限解决方案(八)认证机制介绍、JWT介绍与jjwt框架的使用
文章目录 1 认证机制介绍1.1 HTTP Basic Auth1.2 Cookie-Session Auth1.3 OAuth1.4 Token Auth 2 JWT2.1 JWT介绍2.2 JWT的数据结构2.2.1 JWT头2.2.2 JWT有效载荷2.2.3 JWT签名 3 jjwt3.1 jjwt介绍3.2 jjwt案例 1 认证机制介绍 1.1 HTTP Basic Auth HTTP Basic Auth 是一种简…...

接口测试 —— Postman 变量了解一下!
Postman变量是在Postman工具中使用的一种特殊功能,用于存储和管理动态数据。它们可以用于在请求的不同部分、环境或集合之间共享和重复使用值。 Postman变量有以下几种类型: 1、环境变量(Environment Variables): 环境变量是在…...
鸿蒙系统:核心特性、发展历程与面临的机遇与挑战
好动与不满足是进步的第一必需品 文章目录 前言重要特点和组成部分核心特性主要组件发展历程 机遇挑战总结 前言 鸿蒙系统(HarmonyOS)是由华为技术有限公司开发的一款面向全场景的分布式操作系统。它旨在为用户提供更加流畅、安全且高效的数字生活体验&…...

从0到1,用Rust轻松制作电子书
我之前简单提到过用 Rust 做电子书,今天分享下如何用Rust做电子书。制作电子书其实用途广泛,不仅可以用于技术文档(对技术人来说非常方便),也可以制作用户手册、笔记、教程等,还可以应用于文学创作。 如果…...

半天入门!锂电池剩余寿命预测(Python)
往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享! EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客 拒绝信息泄露!VMD滚动分…...

学生党头戴式耳机哪款音质更胜一筹?TOP4好音质头戴式耳机推荐
在挑选头戴式耳机时,市场上琳琅满目的品牌和型号常常让人目不暇接。究竟哪个学生党头戴式耳机哪款音质更胜一筹?这已成为许多人面临的难题。由于每个人对耳机的偏好各有侧重——一些人追求音质的纯净,一些人重视佩戴的舒适性,而另…...

数据结构 ——— 二叉树的概念及结构
目录 二叉树的概念 特殊的二叉树 一、满二叉树 二、完全二叉树 二叉树的概念 二叉树树示意图: 从以上二叉树示意图可以看出: 二叉树每个节点的度不大于 2 ,那么整个二叉树的度也不大于 2 ,但是也不是每个节点都必须有 2 个…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...