当前位置: 首页 > news >正文

OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测

OpenCV基本操作(python开发)——(1) 读取图像、保存图像
OpenCV基本操作(python开发)——(2)图像色彩操作
OpenCV基本操作(python开发)——(3)图像形态操作
OpenCV基本操作(python开发)——(4)图像梯度处理
OpenCV基本操作(python开发)——(5)轮廓处理
OpenCV基本操作(python开发)——(6)视频基本处理
OpenCV基本操作(python开发)——(7)实现图像校正
OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测

OpenCV——实现芯片瑕疵检测

【任务描述】

利用图像技术,检测出芯片镀盘区域瑕疵。样本图像中,粉红色区域为镀盘区域,镀盘内部空洞为瑕疵区域,利用图像技术检测镀盘是否存在瑕疵,如果存在则将瑕疵区域标记出来。

在这里插入图片描述

【代码】

import cv2
import numpy as np
import math# 第一步:图像预处理
## 1. 转换成灰度图像,进行二值化处理
im_cpu = cv2.imread("../../data/CPU3.png")
im_gray = cv2.cvtColor(im_cpu, cv2.COLOR_BGR2GRAY)  # 转换成灰度图像# 提取出度盘轮廓
ret, im_bin = cv2.threshold(im_gray, 162, 255, cv2.THRESH_BINARY)  # 图像二值化
cv2.imshow("im_cpu", im_cpu)
cv2.imshow("im_gray", im_gray)
cv2.imshow("im_bin", im_bin)# 提取轮廓、绘制边沿
img, contours, hierarchy = cv2.findContours(im_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 绘制前景对象轮廓
mask = np.zeros(im_bin.shape, np.uint8)
mask = cv2.drawContours(mask, contours, -1, (255, 0, 0), -1)  # 绘制实心轮廓
cv2.imshow("mask", mask)# 前景实心轮廓图和二值化图相减
im_sub = cv2.subtract(mask, im_bin)
cv2.imshow("im_sub", im_sub)# 图像闭运算,先膨胀后腐蚀,去除内部毛刺
k = np.ones((10, 10), np.uint8)
im_close = cv2.morphologyEx(im_sub, cv2.MORPH_CLOSE, k, iterations=3)
cv2.imshow("im_close", im_close)# 提取、绘制轮廓、计算面积
img, contours, hierarchy = cv2.findContours(im_close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)(x, y), radius = cv2.minEnclosingCircle(contours[1])
center = (int(x), int(y))
radius = int(radius)
print("center:", center, " radius:", radius)
cv2.circle(im_close, center, radius, (255, 0, 0), 2)  # 绘制圆
cv2.imshow("im_gaussian_blur2", im_close)# 在原始图片上绘制瑕疵
cv2.circle(im_cpu, center, radius, (0, 0, 255), 2)  # 绘制圆
cv2.imshow("im_cpu2", im_cpu)#计算面积
area = math.pi * radius * radius
print("area:", area)
if area > 12:print("度盘表面有缺陷")cv2.waitKey()
cv2.destroyAllWindows()

【执行结果】

在这里插入图片描述

相关文章:

OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测

OpenCV基本操作(python开发)——(1) 读取图像、保存图像 OpenCV基本操作(python开发)——(2)图像色彩操作 OpenCV基本操作(python开发)——(3&…...

聚水潭商品信息集成到MySQL的高效解决方案

聚水潭商品信息集成到MySQL的技术案例分享 在数据驱动的业务环境中,如何高效地实现不同系统之间的数据对接和集成,是每个企业面临的重要挑战。本文将聚焦于一个具体的系统对接集成案例:将聚水潭平台上的商品信息单集成到BI斯莱蒙的MySQL数据…...

# centos6.5 使用 yum list 报错Error Cannot find a valid baseurl for repo bas 解决方法

centos6.5 使用 yum list 报错Error Cannot find a valid baseurl for repo bas 解决方法 一、问题描述: centos6.5 使用 yum list 报错Error Cannot find a valid baseurl for repo bas 如下图: 二、问题分析: 官方已停止对CentOS 6的更…...

【专题】2023-2024中国保险数字化营销调研报告汇总PDF洞察(附原数据表)

原文链接: https://tecdat.cn/?p38063 在时代浪潮的推动下,中国保险行业正经历着一场波澜壮阔的变革之旅。 2023 年,中国经济迈向高质量发展阶段,保险公司纷纷聚焦队伍转型,专业化、职业化代理人成为行业新方向。回…...

““ 引用类型应用举例

#include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和resetiosflags(); //setbase( char x )是设置输出数字的基数,如输出进制数则用se…...

数字图像处理 - 基于ubuntu20.04运行.NET6+OpenCVSharp项目

一、简述 上一篇Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7-CSDN博客,记录了Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7的过程,最终的目的是要这些服务器上运行.net6的程序,进行图像处理、onnxruntime推理等。 这里记录进行OpenCVSharp的安装和…...

git cherry-pick用法详解

git cherry-pick 是 Git 中一个非常有用的命令&#xff0c;它允许你选择一个特定的提交&#xff08;commit&#xff09;并将其变更应用到当前分支上。这个功能在你需要将某个分支上的某个或某些特定提交合并到另一个分支时特别有用&#xff0c;而不需要将整个分支合并过去。 基…...

HCIP-HarmonyOS Application Developer V1.0 笔记(一)

HarmonyOS的系统特性 硬件互助&#xff0c;资源共享;一次开发&#xff0c;多端部署;统一OS&#xff0c;弹性部署。 分布式软总线&#xff1a;分布式任务调度、分布式数据管理、分布式硬件虚拟化的基座 18N的独立设备 1个手机&#xff0c;8种设备&#xff08;车机&#xff0c…...

开发流程初学者指南——需求分析

目录 从零开始理解需求分析什么是需求分析&#xff1f;需求分析的目标需求分析的基本原则需求分析的各个阶段需求分析的常用方法和工具编写需求文档总结 从零开始理解需求分析 需求分析是软件开发过程中不可或缺的一环&#xff0c;它帮助我们明确用户的需求&#xff0c;确保最…...

CRM平台排名:用户体验与客户满意度的深度解析

在数字化时代&#xff0c;客户关系管理&#xff08;CRM&#xff09;系统已成为企业不可或缺的工具&#xff0c;它帮助企业优化客户互动&#xff0c;提升销售效率&#xff0c;并增强客户满意度。本文将深度解析各大CRM平台的用户体验和客户满意度&#xff0c;盘点它们的品牌介绍…...

WIFI、NBIOT、4G模块调试AT指令连接华为云物联网服务器(MQTT协议)

一、前言 随着物联网&#xff08;IoT&#xff09;技术的飞速发展&#xff0c;越来越多的设备开始连接到互联网&#xff0c;形成了一个万物互联的世界。在这个背景下&#xff0c;设备与云端之间的通讯变得尤为重要。 本文将探讨几种常见的无线通信模块——EC20-4G、Air724ug-4…...

打造自己的RAG解析大模型:(新技能)企业垂类数据标注(一)

在上一篇文章中&#xff0c;我们以通用版面分析服务为例&#xff0c;展示了从模型发布到API集成的完整流程。如果你成功完成了这些步骤&#xff0c;值得庆祝&#xff01;这不仅意味着你已成功安装PaddleX&#xff0c;还掌握了利用它发布OCR和目标检测等大模型服务的能力&#x…...

怎么理解ES6 Proxy

Proxy 可以理解成&#xff0c;在目标对象之前架设一层 “拦截”&#xff0c;外界对该对象的访问&#xff0c;都必须先通过这层拦截&#xff0c;因此提供了一种机制&#xff0c;可以对外界的访问进行过滤和改写。Proxy 这个词的原意是代理&#xff0c;用在这里表示由它来 “代理…...

verilog实现一个5bit序列检测器

以下是用 Verilog 实现一个 5bit 序列检测器的代码&#xff1a; module five_bit_sequence_detector(input clk,input reset,input [4:0] in,output reg detected );// 定义状态参数localparam IDLE 4b0000;localparam STATE1 4b0001;localparam STATE2 4b0010;localparam …...

Redis数据安全_持久化机制

由于Redis的数据都存放在内存中&#xff0c;如果没有配置持久化&#xff0c;Redis重启后数据就全丢失了&#xff0c;于是需要开启Redis的持久化功能&#xff0c;将数据保存到磁盘上&#xff0c;当Redis重启后&#xff0c;可以从磁盘中恢复数据。 持久化机制概述 对于Redis而言…...

什么是信息熵,什么是交叉熵,什么是KL散度?

什么是信息熵&#xff1f; 信息熵&#xff08;Entropy&#xff09;是信息论中的一个基本概念&#xff0c;用来衡量一个随机变量不确定性的大小。它反映了对一个事件结果的预测难度&#xff0c;或者说是描述这个事件需要多少“信息量”。信息熵是由香农&#xff08;Claude Shan…...

开发者的福音:PyTorch 2.5现已支持英特尔独立显卡训练

《PyTorch 2.5重磅更新&#xff1a;性能优化新特性》中的一个新特性就是&#xff1a;正式支持在英特尔独立显卡上训练模型&#xff01; PyTorch 2.5 独立显卡类型 支持的操作系统 Intel 数据中心GPU Max系列 Linux Intel Arc™系列 Linux/Windows 本文将在IntelCore™…...

Deep InfoMax(DIM)(2019-02-ICLR)

论文&#xff1a;LEARNING DEEP REPRESENTATIONS BY MUTUAL INFORMATION ESTIMATION AND MAXIMIZATION ABSTRACT 研究目标 研究通过最大化输入和深度神经网络编码器输出之间的互信息来进行无监督表示学习目的是学习到对下游任务有用的特征表示 核心发现&#xff1a;结构很重…...

2024年10月中国数据库排行榜:TiDB续探花,GaussDB升四强

10月中国数据库流行度排行榜如期发布&#xff0c;再次印证了市场分层的加速形成。国家数据库测评结果已然揭晓&#xff0c;本批次通过的产品数量有限&#xff0c;凸显了行业标准的严格与技术门槛的提升。再看排行榜&#xff0c;得分差距明显增大&#xff0c;第三名与后续竞争者…...

css边框修饰

一、设置线条样式 通过 border-style 属性设置&#xff0c;可选择的一些属性如下&#xff1a; dotted&#xff1a;点线 dashed&#xff1a;虚线 solid&#xff1a;实线 double&#xff1a;双实线 效果如下&#xff1a; 二、设置边框线宽度 ① 通过 border-width 整体设置…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...