OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测
OpenCV基本操作(python开发)——(1) 读取图像、保存图像
OpenCV基本操作(python开发)——(2)图像色彩操作
OpenCV基本操作(python开发)——(3)图像形态操作
OpenCV基本操作(python开发)——(4)图像梯度处理
OpenCV基本操作(python开发)——(5)轮廓处理
OpenCV基本操作(python开发)——(6)视频基本处理
OpenCV基本操作(python开发)——(7)实现图像校正
OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测
OpenCV——实现芯片瑕疵检测
【任务描述】
利用图像技术,检测出芯片镀盘区域瑕疵。样本图像中,粉红色区域为镀盘区域,镀盘内部空洞为瑕疵区域,利用图像技术检测镀盘是否存在瑕疵,如果存在则将瑕疵区域标记出来。

【代码】
import cv2
import numpy as np
import math# 第一步:图像预处理
## 1. 转换成灰度图像,进行二值化处理
im_cpu = cv2.imread("../../data/CPU3.png")
im_gray = cv2.cvtColor(im_cpu, cv2.COLOR_BGR2GRAY) # 转换成灰度图像# 提取出度盘轮廓
ret, im_bin = cv2.threshold(im_gray, 162, 255, cv2.THRESH_BINARY) # 图像二值化
cv2.imshow("im_cpu", im_cpu)
cv2.imshow("im_gray", im_gray)
cv2.imshow("im_bin", im_bin)# 提取轮廓、绘制边沿
img, contours, hierarchy = cv2.findContours(im_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 绘制前景对象轮廓
mask = np.zeros(im_bin.shape, np.uint8)
mask = cv2.drawContours(mask, contours, -1, (255, 0, 0), -1) # 绘制实心轮廓
cv2.imshow("mask", mask)# 前景实心轮廓图和二值化图相减
im_sub = cv2.subtract(mask, im_bin)
cv2.imshow("im_sub", im_sub)# 图像闭运算,先膨胀后腐蚀,去除内部毛刺
k = np.ones((10, 10), np.uint8)
im_close = cv2.morphologyEx(im_sub, cv2.MORPH_CLOSE, k, iterations=3)
cv2.imshow("im_close", im_close)# 提取、绘制轮廓、计算面积
img, contours, hierarchy = cv2.findContours(im_close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)(x, y), radius = cv2.minEnclosingCircle(contours[1])
center = (int(x), int(y))
radius = int(radius)
print("center:", center, " radius:", radius)
cv2.circle(im_close, center, radius, (255, 0, 0), 2) # 绘制圆
cv2.imshow("im_gaussian_blur2", im_close)# 在原始图片上绘制瑕疵
cv2.circle(im_cpu, center, radius, (0, 0, 255), 2) # 绘制圆
cv2.imshow("im_cpu2", im_cpu)#计算面积
area = math.pi * radius * radius
print("area:", area)
if area > 12:print("度盘表面有缺陷")cv2.waitKey()
cv2.destroyAllWindows()
【执行结果】

相关文章:
OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测
OpenCV基本操作(python开发)——(1) 读取图像、保存图像 OpenCV基本操作(python开发)——(2)图像色彩操作 OpenCV基本操作(python开发)——(3&…...
聚水潭商品信息集成到MySQL的高效解决方案
聚水潭商品信息集成到MySQL的技术案例分享 在数据驱动的业务环境中,如何高效地实现不同系统之间的数据对接和集成,是每个企业面临的重要挑战。本文将聚焦于一个具体的系统对接集成案例:将聚水潭平台上的商品信息单集成到BI斯莱蒙的MySQL数据…...
# centos6.5 使用 yum list 报错Error Cannot find a valid baseurl for repo bas 解决方法
centos6.5 使用 yum list 报错Error Cannot find a valid baseurl for repo bas 解决方法 一、问题描述: centos6.5 使用 yum list 报错Error Cannot find a valid baseurl for repo bas 如下图: 二、问题分析: 官方已停止对CentOS 6的更…...
【专题】2023-2024中国保险数字化营销调研报告汇总PDF洞察(附原数据表)
原文链接: https://tecdat.cn/?p38063 在时代浪潮的推动下,中国保险行业正经历着一场波澜壮阔的变革之旅。 2023 年,中国经济迈向高质量发展阶段,保险公司纷纷聚焦队伍转型,专业化、职业化代理人成为行业新方向。回…...
““ 引用类型应用举例
#include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和resetiosflags(); //setbase( char x )是设置输出数字的基数,如输出进制数则用se…...
数字图像处理 - 基于ubuntu20.04运行.NET6+OpenCVSharp项目
一、简述 上一篇Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7-CSDN博客,记录了Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7的过程,最终的目的是要这些服务器上运行.net6的程序,进行图像处理、onnxruntime推理等。 这里记录进行OpenCVSharp的安装和…...
git cherry-pick用法详解
git cherry-pick 是 Git 中一个非常有用的命令,它允许你选择一个特定的提交(commit)并将其变更应用到当前分支上。这个功能在你需要将某个分支上的某个或某些特定提交合并到另一个分支时特别有用,而不需要将整个分支合并过去。 基…...
HCIP-HarmonyOS Application Developer V1.0 笔记(一)
HarmonyOS的系统特性 硬件互助,资源共享;一次开发,多端部署;统一OS,弹性部署。 分布式软总线:分布式任务调度、分布式数据管理、分布式硬件虚拟化的基座 18N的独立设备 1个手机,8种设备(车机,…...
开发流程初学者指南——需求分析
目录 从零开始理解需求分析什么是需求分析?需求分析的目标需求分析的基本原则需求分析的各个阶段需求分析的常用方法和工具编写需求文档总结 从零开始理解需求分析 需求分析是软件开发过程中不可或缺的一环,它帮助我们明确用户的需求,确保最…...
CRM平台排名:用户体验与客户满意度的深度解析
在数字化时代,客户关系管理(CRM)系统已成为企业不可或缺的工具,它帮助企业优化客户互动,提升销售效率,并增强客户满意度。本文将深度解析各大CRM平台的用户体验和客户满意度,盘点它们的品牌介绍…...
WIFI、NBIOT、4G模块调试AT指令连接华为云物联网服务器(MQTT协议)
一、前言 随着物联网(IoT)技术的飞速发展,越来越多的设备开始连接到互联网,形成了一个万物互联的世界。在这个背景下,设备与云端之间的通讯变得尤为重要。 本文将探讨几种常见的无线通信模块——EC20-4G、Air724ug-4…...
打造自己的RAG解析大模型:(新技能)企业垂类数据标注(一)
在上一篇文章中,我们以通用版面分析服务为例,展示了从模型发布到API集成的完整流程。如果你成功完成了这些步骤,值得庆祝!这不仅意味着你已成功安装PaddleX,还掌握了利用它发布OCR和目标检测等大模型服务的能力&#x…...
怎么理解ES6 Proxy
Proxy 可以理解成,在目标对象之前架设一层 “拦截”,外界对该对象的访问,都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。Proxy 这个词的原意是代理,用在这里表示由它来 “代理…...
verilog实现一个5bit序列检测器
以下是用 Verilog 实现一个 5bit 序列检测器的代码: module five_bit_sequence_detector(input clk,input reset,input [4:0] in,output reg detected );// 定义状态参数localparam IDLE 4b0000;localparam STATE1 4b0001;localparam STATE2 4b0010;localparam …...
Redis数据安全_持久化机制
由于Redis的数据都存放在内存中,如果没有配置持久化,Redis重启后数据就全丢失了,于是需要开启Redis的持久化功能,将数据保存到磁盘上,当Redis重启后,可以从磁盘中恢复数据。 持久化机制概述 对于Redis而言…...
什么是信息熵,什么是交叉熵,什么是KL散度?
什么是信息熵? 信息熵(Entropy)是信息论中的一个基本概念,用来衡量一个随机变量不确定性的大小。它反映了对一个事件结果的预测难度,或者说是描述这个事件需要多少“信息量”。信息熵是由香农(Claude Shan…...
开发者的福音:PyTorch 2.5现已支持英特尔独立显卡训练
《PyTorch 2.5重磅更新:性能优化新特性》中的一个新特性就是:正式支持在英特尔独立显卡上训练模型! PyTorch 2.5 独立显卡类型 支持的操作系统 Intel 数据中心GPU Max系列 Linux Intel Arc™系列 Linux/Windows 本文将在IntelCore™…...
Deep InfoMax(DIM)(2019-02-ICLR)
论文:LEARNING DEEP REPRESENTATIONS BY MUTUAL INFORMATION ESTIMATION AND MAXIMIZATION ABSTRACT 研究目标 研究通过最大化输入和深度神经网络编码器输出之间的互信息来进行无监督表示学习目的是学习到对下游任务有用的特征表示 核心发现:结构很重…...
2024年10月中国数据库排行榜:TiDB续探花,GaussDB升四强
10月中国数据库流行度排行榜如期发布,再次印证了市场分层的加速形成。国家数据库测评结果已然揭晓,本批次通过的产品数量有限,凸显了行业标准的严格与技术门槛的提升。再看排行榜,得分差距明显增大,第三名与后续竞争者…...
css边框修饰
一、设置线条样式 通过 border-style 属性设置,可选择的一些属性如下: dotted:点线 dashed:虚线 solid:实线 double:双实线 效果如下: 二、设置边框线宽度 ① 通过 border-width 整体设置…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
