““ 引用类型应用举例
| #include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和resetiosflags(); //setbase( char x )是设置输出数字的基数,如输出进制数则用setbase(8);如输出进制数则用setbase(10);如输出进制数则用setbase(16); //setbase( char x )的参数x只能是,10和,其它参数无效,setbase对其后的cout都有影响; //当程序需要在屏幕上显示输出时,可以使用插入操作符“<<”向cout输出流中插入字符; //例如: cout<<"I love C++\n"; //当程序需要执行键盘输入时,可以使用抽取操作符“>>”从cin输人流中抽取字符; //例如: int myAge; cin>>myAge; //I/O流的常用控制符如下: //dec 置基数为; //hex 置基数为; //oct 置基数为; //left 左对齐 //right 右对齐 //setiosflags(ios::left) 左对齐,left位于ios文件中 //setiosflags(ios::right) 右对齐,right位于ios文件中 //setiosflags(ios::uppercase) 控制进制数大写输出 //resetiosflags(ios::uppercase) 控制进制数小写输出 //setfill(c) 没填充字符为c,对其后的cout都有影响; //setw(n) 设置值的输出宽度为n个字符,仅仅影响下一个数值输出; //setiosflags(ios::showpos) 强制显示正负号,对于浮点数和十进制数,正数将显示+; //setiosflags(ios::fixed) 固定以小数方式显示 //setiosflags(ios::showpoint) 若只有整数部分,则强制显示小数点; //setprecision(n) 设置浮点数小数点后有n位小数; //setiosflags(ios::scientific) 指数表示; //注意:在使用setiosflags()之后,一定要使用resetiosflags(()恢复到默认设置;否则,会出现意想不到的错误; //例如:在cout<<setiosflags(ios::fixed)被使用完后,要调用cout<<resetiosflags(ios::fixed)恢复到默认设置; //注意:cout<<setiosflags(ios::lowercase); //控制进制数小写输出,在Visual studio C++2005中,不支持该语句; //在不使用#include<iomanip>时,cout.setf(ios::right); //设置为右对齐输出; //浮点数默认显示位有效位; using namespace std; //告诉编译器使用std标准程序库; int main() { unsigned int i; //声明五符号字节型变量i; unsigned char x=1; //声明无符号字节型变量x,并初始化为; unsigned char &y=x; //声明引用y为x的别名; for(i=0;i<15;i++) { cout<<setbase(10); //采用10进制方式输出; cout<<"i="<<i<<" "; //将i的值输出到屏幕上; cout<<setbase(10); //采用10进制方式输出; cout<<"x="<<(int)x<<" "; //将x的值输出到屏幕上; cout<<setbase(16); //采用16进制方式输出; cout<<"y="<<(int)y<<endl; //将y的值输出到屏幕上; x++; } cout<<setbase(10); //重新设置为默认,采用10进制方式输出; return(0); //退出函数; }
|
相关文章:
““ 引用类型应用举例
#include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和resetiosflags(); //setbase( char x )是设置输出数字的基数,如输出进制数则用se…...
数字图像处理 - 基于ubuntu20.04运行.NET6+OpenCVSharp项目
一、简述 上一篇Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7-CSDN博客,记录了Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7的过程,最终的目的是要这些服务器上运行.net6的程序,进行图像处理、onnxruntime推理等。 这里记录进行OpenCVSharp的安装和…...
git cherry-pick用法详解
git cherry-pick 是 Git 中一个非常有用的命令,它允许你选择一个特定的提交(commit)并将其变更应用到当前分支上。这个功能在你需要将某个分支上的某个或某些特定提交合并到另一个分支时特别有用,而不需要将整个分支合并过去。 基…...
HCIP-HarmonyOS Application Developer V1.0 笔记(一)
HarmonyOS的系统特性 硬件互助,资源共享;一次开发,多端部署;统一OS,弹性部署。 分布式软总线:分布式任务调度、分布式数据管理、分布式硬件虚拟化的基座 18N的独立设备 1个手机,8种设备(车机,…...
开发流程初学者指南——需求分析
目录 从零开始理解需求分析什么是需求分析?需求分析的目标需求分析的基本原则需求分析的各个阶段需求分析的常用方法和工具编写需求文档总结 从零开始理解需求分析 需求分析是软件开发过程中不可或缺的一环,它帮助我们明确用户的需求,确保最…...
CRM平台排名:用户体验与客户满意度的深度解析
在数字化时代,客户关系管理(CRM)系统已成为企业不可或缺的工具,它帮助企业优化客户互动,提升销售效率,并增强客户满意度。本文将深度解析各大CRM平台的用户体验和客户满意度,盘点它们的品牌介绍…...
WIFI、NBIOT、4G模块调试AT指令连接华为云物联网服务器(MQTT协议)
一、前言 随着物联网(IoT)技术的飞速发展,越来越多的设备开始连接到互联网,形成了一个万物互联的世界。在这个背景下,设备与云端之间的通讯变得尤为重要。 本文将探讨几种常见的无线通信模块——EC20-4G、Air724ug-4…...
打造自己的RAG解析大模型:(新技能)企业垂类数据标注(一)
在上一篇文章中,我们以通用版面分析服务为例,展示了从模型发布到API集成的完整流程。如果你成功完成了这些步骤,值得庆祝!这不仅意味着你已成功安装PaddleX,还掌握了利用它发布OCR和目标检测等大模型服务的能力&#x…...
怎么理解ES6 Proxy
Proxy 可以理解成,在目标对象之前架设一层 “拦截”,外界对该对象的访问,都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。Proxy 这个词的原意是代理,用在这里表示由它来 “代理…...
verilog实现一个5bit序列检测器
以下是用 Verilog 实现一个 5bit 序列检测器的代码: module five_bit_sequence_detector(input clk,input reset,input [4:0] in,output reg detected );// 定义状态参数localparam IDLE 4b0000;localparam STATE1 4b0001;localparam STATE2 4b0010;localparam …...
Redis数据安全_持久化机制
由于Redis的数据都存放在内存中,如果没有配置持久化,Redis重启后数据就全丢失了,于是需要开启Redis的持久化功能,将数据保存到磁盘上,当Redis重启后,可以从磁盘中恢复数据。 持久化机制概述 对于Redis而言…...
什么是信息熵,什么是交叉熵,什么是KL散度?
什么是信息熵? 信息熵(Entropy)是信息论中的一个基本概念,用来衡量一个随机变量不确定性的大小。它反映了对一个事件结果的预测难度,或者说是描述这个事件需要多少“信息量”。信息熵是由香农(Claude Shan…...
开发者的福音:PyTorch 2.5现已支持英特尔独立显卡训练
《PyTorch 2.5重磅更新:性能优化新特性》中的一个新特性就是:正式支持在英特尔独立显卡上训练模型! PyTorch 2.5 独立显卡类型 支持的操作系统 Intel 数据中心GPU Max系列 Linux Intel Arc™系列 Linux/Windows 本文将在IntelCore™…...
Deep InfoMax(DIM)(2019-02-ICLR)
论文:LEARNING DEEP REPRESENTATIONS BY MUTUAL INFORMATION ESTIMATION AND MAXIMIZATION ABSTRACT 研究目标 研究通过最大化输入和深度神经网络编码器输出之间的互信息来进行无监督表示学习目的是学习到对下游任务有用的特征表示 核心发现:结构很重…...
2024年10月中国数据库排行榜:TiDB续探花,GaussDB升四强
10月中国数据库流行度排行榜如期发布,再次印证了市场分层的加速形成。国家数据库测评结果已然揭晓,本批次通过的产品数量有限,凸显了行业标准的严格与技术门槛的提升。再看排行榜,得分差距明显增大,第三名与后续竞争者…...
css边框修饰
一、设置线条样式 通过 border-style 属性设置,可选择的一些属性如下: dotted:点线 dashed:虚线 solid:实线 double:双实线 效果如下: 二、设置边框线宽度 ① 通过 border-width 整体设置…...
利用Python进行数据可视化:实用指南与推荐库
利用Python进行数据可视化:实用指南与推荐库 数据可视化是将数据转化为图形和图表的过程,它能够帮助我们更直观地理解数据的趋势、模式和关系。在Python中,有许多强大的库可用于数据可视化,从简单的折线图到复杂的交互式图表,应有尽有。本文将详细介绍Python数据可视化的…...
MobileNetv2网络详解
背景: MobileNet v1中DW卷积在训练完之后部分卷积核会废掉,大部分参数为“0” MobileNet v2网络是由Google团队在2018年提出的,相比于MobileNet v1网络,准确率更高,模型更小 网络亮点: Inverted Residu…...
惊了!大模型连这样的验证码都能读懂_java_识别验证码
最近在看视觉大模型的能力,然后用了某网站的一个验证码试了试,竟然连这样的验证码都能认识,这个有点夸张,尤其是这个9和6颠倒的都能理解,现在的能力已经这么牛了么 具体就是用了通义最新的qwen vl模型spring ai alibab…...
【小白学机器学习26】 极大似然估计,K2检验,logit逻辑回归(对数回归)(未完成----)
目录 1 先从一个例题出来,预期值和现实值的差异怎么评价? 1.1 这样一个问题 1.2 我们的一般分析 1.3 用到的关键点1 1.4 但是差距多远,算是远呢? 2 极大似然估计 2.1 极大似然估计的目的 2.1.1 极大似然估计要解决什么问题…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
渗透实战PortSwigger靶场:lab13存储型DOM XSS详解
进来是需要留言的,先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码,输入的<>当成字符串处理回显到页面中,看来只是把用户输…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
