当前位置: 首页 > news >正文

音视频入门基础:FLV专题(19)——FFmpeg源码中,解码Audio Tag的AudioTagHeader,并提取AUDIODATA的实现

一、引言

从《音视频入门基础:FLV专题(18)——Audio Tag简介》可以知道,未加密的情况下,FLV文件中的一个Audio Tag = Tag header + AudioTagHeader + AUDIODATA。本文讲述FFmpeg源码中是怎样解码Audio Tag的AudioTagHeader ,拿到里面的信息的,以及是怎样提取AUDIODATA的(以音频压缩编码格式为AAC为例)。

二、flv_read_packet函数

从《音视频入门基础:FLV专题(8)——FFmpeg源码中,解码Tag header的实现》可以知道,FFmpeg源码中使用flv_read_packet函数来读取每个Tag的信息,该函数的前半部分实现了解码Tag header,获取其TagType属性的功能。然后根据TagType属性的值,判断该Tag为音频Tag、视频Tag还是脚本Tag。根据Tag的类型分别执行不同的解码操作:

    if (type == FLV_TAG_TYPE_AUDIO) {//...} else if (type == FLV_TAG_TYPE_VIDEO) {//...}else if (type == FLV_TAG_TYPE_META) {//...}else{//...}//...

如果在flv_read_packet函数的前半部分判断出该Tag为Audio Tag,flv_read_packet函数中会执行如下逻辑解码Audio Tag的AudioTagHeader:

    if (type == FLV_TAG_TYPE_AUDIO) {stream_type = FLV_STREAM_TYPE_AUDIO;flags    = avio_r8(s->pb);size--;} //...if (stream_type == FLV_STREAM_TYPE_AUDIO) {int bits_per_coded_sample;channels = (flags & FLV_AUDIO_CHANNEL_MASK) == FLV_STEREO ? 2 : 1;sample_rate = 44100 << ((flags & FLV_AUDIO_SAMPLERATE_MASK) >>FLV_AUDIO_SAMPLERATE_OFFSET) >> 3;bits_per_coded_sample = (flags & FLV_AUDIO_SAMPLESIZE_MASK) ? 16 : 8;if (!av_channel_layout_check(&st->codecpar->ch_layout) ||!st->codecpar->sample_rate ||!st->codecpar->bits_per_coded_sample) {av_channel_layout_default(&st->codecpar->ch_layout, channels);st->codecpar->sample_rate           = sample_rate;st->codecpar->bits_per_coded_sample = bits_per_coded_sample;}if (!st->codecpar->codec_id) {flv_set_audio_codec(s, st, st->codecpar,flags & FLV_AUDIO_CODECID_MASK);flv->last_sample_rate =sample_rate           = st->codecpar->sample_rate;flv->last_channels    =channels              = st->codecpar->ch_layout.nb_channels;} else {AVCodecParameters *par = avcodec_parameters_alloc();if (!par) {ret = AVERROR(ENOMEM);goto leave;}par->sample_rate = sample_rate;par->bits_per_coded_sample = bits_per_coded_sample;flv_set_audio_codec(s, st, par, flags & FLV_AUDIO_CODECID_MASK);sample_rate = par->sample_rate;avcodec_parameters_free(&par);}}//...if (st->codecpar->codec_id == AV_CODEC_ID_AAC ||st->codecpar->codec_id == AV_CODEC_ID_H264 ||st->codecpar->codec_id == AV_CODEC_ID_MPEG4 ||st->codecpar->codec_id == AV_CODEC_ID_HEVC ||st->codecpar->codec_id == AV_CODEC_ID_AV1 ||st->codecpar->codec_id == AV_CODEC_ID_VP9) {int type = 0;if (enhanced_flv && stream_type == FLV_STREAM_TYPE_VIDEO) {type = flags & 0x0F;} else {type = avio_r8(s->pb);size--;}if (size < 0) {ret = AVERROR_INVALIDDATA;goto leave;}if (enhanced_flv && stream_type == FLV_STREAM_TYPE_VIDEO && flv->meta_color_info_flag) {flv_update_video_color_info(s, st); // update av packet side dataflv->meta_color_info_flag = 0;}if (st->codecpar->codec_id == AV_CODEC_ID_H264 || st->codecpar->codec_id == AV_CODEC_ID_MPEG4 ||(st->codecpar->codec_id == AV_CODEC_ID_HEVC && type == PacketTypeCodedFrames)) {// sign extensionint32_t cts = (avio_rb24(s->pb) + 0xff800000) ^ 0xff800000;pts = av_sat_add64(dts, cts);if (cts < 0) { // dts might be wrongif (!flv->wrong_dts)av_log(s, AV_LOG_WARNING,"Negative cts, previous timestamps might be wrong.\n");flv->wrong_dts = 1;} else if (FFABS(dts - pts) > 1000*60*15) {av_log(s, AV_LOG_WARNING,"invalid timestamps %"PRId64" %"PRId64"\n", dts, pts);dts = pts = AV_NOPTS_VALUE;}size -= 3;}if (type == 0 && (!st->codecpar->extradata || st->codecpar->codec_id == AV_CODEC_ID_AAC ||st->codecpar->codec_id == AV_CODEC_ID_H264 || st->codecpar->codec_id == AV_CODEC_ID_HEVC ||st->codecpar->codec_id == AV_CODEC_ID_AV1 || st->codecpar->codec_id == AV_CODEC_ID_VP9)) {AVDictionaryEntry *t;if (st->codecpar->extradata) {if ((ret = flv_queue_extradata(flv, s->pb, stream_type, size)) < 0)return ret;ret = FFERROR_REDO;goto leave;}if ((ret = flv_get_extradata(s, st, size)) < 0)return ret;/* Workaround for buggy Omnia A/XE encoder */t = av_dict_get(s->metadata, "Encoder", NULL, 0);if (st->codecpar->codec_id == AV_CODEC_ID_AAC && t && !strcmp(t->value, "Omnia A/XE"))st->codecpar->extradata_size = 2;ret = FFERROR_REDO;goto leave;}}//...

下面我们分析上述代码块中解码Audio Tag的AudioTagHeader的原理。

三、flv_read_packet函数中解码Audio Tag的AudioTagHeader的实现

上述代码块中,首先通过avio_r8函数获取AudioTagHeader的第一个字节,也就是SoundFormat(占4位) + SoundRate(占2位) + SoundSize(占1位) + SoundType(占1位),存贮到局部变量flags中。关于avio_r8函数的用法可以参考:《FFmpeg源码:avio_r8、avio_rl16、avio_rl24、avio_rl32、avio_rl64函数分析》:

    if (type == FLV_TAG_TYPE_AUDIO) {stream_type = FLV_STREAM_TYPE_AUDIO;flags    = avio_r8(s->pb);size--;} 

FLV文件相关的宏,定义在libavformat/flv.h中:

/* offsets for packed values */
#define FLV_AUDIO_SAMPLESSIZE_OFFSET 1
#define FLV_AUDIO_SAMPLERATE_OFFSET  2
#define FLV_AUDIO_CODECID_OFFSET     4#define FLV_VIDEO_FRAMETYPE_OFFSET   4/* bitmasks to isolate specific values */
#define FLV_AUDIO_CHANNEL_MASK    0x01
#define FLV_AUDIO_SAMPLESIZE_MASK 0x02
#define FLV_AUDIO_SAMPLERATE_MASK 0x0c
#define FLV_AUDIO_CODECID_MASK    0xf0

通过下面语句将AudioTagHeader的SoundType属性提取出来,转换得到音频声道数目。将频声道数目存贮到局部变量channels中:

        channels = (flags & FLV_AUDIO_CHANNEL_MASK) == FLV_STEREO ? 2 : 1;

通过下面语句将AudioTagHeader的SoundRate属性提取出来,转换得到音频采样频率。将音频采样频率存贮到局部变量sample_rate中:

        sample_rate = 44100 << ((flags & FLV_AUDIO_SAMPLERATE_MASK) >>FLV_AUDIO_SAMPLERATE_OFFSET) >> 3;

通过下面语句将AudioTagHeader的SoundSize属性提取出来,转换得到Bit depth。将Bit depth存贮到局部变量bits_per_coded_sample中:

        bits_per_coded_sample = (flags & FLV_AUDIO_SAMPLESIZE_MASK) ? 16 : 8;

将上述得到的音频声道数目赋值给st->codecpar->ch_layout,将音频采样频率赋值给st->codecpar->sample_rate,将Bit depth赋值给st->codecpar->bits_per_coded_sample:

        if (!av_channel_layout_check(&st->codecpar->ch_layout) ||!st->codecpar->sample_rate ||!st->codecpar->bits_per_coded_sample) {av_channel_layout_default(&st->codecpar->ch_layout, channels);st->codecpar->sample_rate           = sample_rate;st->codecpar->bits_per_coded_sample = bits_per_coded_sample;}

将AudioTagHeader的SoundFormat属性提取出来,转换得到音频压缩编码格式。将音频压缩编码格式赋值给st->codecpar->codec_id中:

        if (!st->codecpar->codec_id) {flv_set_audio_codec(s, st, st->codecpar,flags & FLV_AUDIO_CODECID_MASK);//...}

由于st等价于s->streams[stream_index],stream_index为该音频流的流索引,指针s指向AVFormatContext变量。所以通过上面两步的赋值操作后,可以在flv_read_packet函数外部,通过(s->streams[stream_index])->codecpar拿到该音频的音频声道数目、音频采样频率、Bit depth、音频压缩编码格式。

当FLV文件中的音频为AAC格式时,AudioTagHeader包含AACPacketType属性。通过语句:type = avio_r8(s->pb) 获取AACPacketType属性:

    if (st->codecpar->codec_id == AV_CODEC_ID_AAC ||st->codecpar->codec_id == AV_CODEC_ID_H264 ||st->codecpar->codec_id == AV_CODEC_ID_MPEG4 ||st->codecpar->codec_id == AV_CODEC_ID_HEVC ||st->codecpar->codec_id == AV_CODEC_ID_AV1 ||st->codecpar->codec_id == AV_CODEC_ID_VP9) {int type = 0;if (enhanced_flv && stream_type == FLV_STREAM_TYPE_VIDEO) {type = flags & 0x0F;} else {type = avio_r8(s->pb);size--;}
//...
}

至此,AudioTagHeader中的属性已被全部解析出来。然后flv_read_packet函数会继续往下执行,提取Audio Tag的AUDIODATA。

四、提取Audio Tag的AUDIODATA

从《音视频入门基础:FLV专题(18)——Audio Tag简介》可以知道,未加密的情况下,FLV文件中的一个Audio Tag = Tag header + AudioTagHeader + AUDIODATA。AUDIODATA为AudioTagBody。FLV文件的音频压缩编码格式为AAC时,AudioTagBody为AACAUDIODATA,当AACPacketType值为0时,AACAUDIODATA为AudioSpecificConfig;当AACPacketType值为1时,AACAUDIODATA包含一帧AAC音频压缩数据,所以下面得分情况讨论。

(一)AACPacketType的值为0

AACPacketType的值为0时,AACAUDIODATA为AudioSpecificConfig。flv_read_packet函数通过下面代码提取AudioSpecificConfig:

        if (type == 0 && (!st->codecpar->extradata || st->codecpar->codec_id == AV_CODEC_ID_AAC ||st->codecpar->codec_id == AV_CODEC_ID_H264 || st->codecpar->codec_id == AV_CODEC_ID_HEVC ||st->codecpar->codec_id == AV_CODEC_ID_AV1 || st->codecpar->codec_id == AV_CODEC_ID_VP9)) {AVDictionaryEntry *t;if (st->codecpar->extradata) {if ((ret = flv_queue_extradata(flv, s->pb, stream_type, size)) < 0)return ret;ret = FFERROR_REDO;goto leave;}if ((ret = flv_get_extradata(s, st, size)) < 0)return ret;/* Workaround for buggy Omnia A/XE encoder */t = av_dict_get(s->metadata, "Encoder", NULL, 0);if (st->codecpar->codec_id == AV_CODEC_ID_AAC && t && !strcmp(t->value, "Omnia A/XE"))st->codecpar->extradata_size = 2;ret = FFERROR_REDO;goto leave;}

上面的代码块中,局部变量type存贮AudioTagHeader的AACPacketType属性。当AACPacketType值为0并且音频压缩编码格式为AAC并且还未获取AudioSpecificConfig时,会执行下面的代码块,从而拿到AudioSpecificConfig。下面代码块的作用是:读取该Audio Tag的AudioSpecificConfig,将其存贮到s->streams[stream_index]->codecpar->extradata指向的缓冲区中。其中stream_index为该路音频流在FLV文件中的流索引,size为AudioSpecificConfig所占的存贮空间(以字节为单位):

            if ((ret = flv_get_extradata(s, st, size)) < 0)return ret;

然后之后在flv_read_packet函数外部会通过decode_audio_specific_config_gb函数解码上述提取出来的AudioSpecificConfig,具体可以参考:《音视频入门基础:AAC专题(12)——FFmpeg源码中,解码AudioSpecificConfig的实现》。

(二)AACPacketType的值为1

当AACPacketType值为1时,AACAUDIODATA包含一帧AAC音频压缩数据。flv_read_packet函数通过下面代码提取AUDIODATA,即通过av_get_packet函数读取一帧AAC音频压缩数据,保存到pkt->data指向的缓冲区中。关于av_get_packet函数可以参考:《FFmpeg源码:append_packet_chunked、av_get_packet、av_append_packet函数分析》。这样在执行下面的代码块后,pkt->data会得到该帧的实际的压缩后的AAC音频数据;pkt->dts会得到该帧的解码时间戳,解码时间戳来源于Tag header的Timestamp和TimestampExtended属性,具体可以参考:《音视频入门基础:FLV专题(8)——FFmpeg源码中,解码Tag header的实现》;pkt->pts会得到该帧的显示时间戳,对于音频,显示时间戳等于解码时间戳:

    ret = av_get_packet(s->pb, pkt, size);if (ret < 0)return ret;pkt->dts          = dts;pkt->pts          = pts == AV_NOPTS_VALUE ? dts : pts;pkt->stream_index = st->index;pkt->pos          = pos;

相关文章:

音视频入门基础:FLV专题(19)——FFmpeg源码中,解码Audio Tag的AudioTagHeader,并提取AUDIODATA的实现

一、引言 从《音视频入门基础&#xff1a;FLV专题&#xff08;18&#xff09;——Audio Tag简介》可以知道&#xff0c;未加密的情况下&#xff0c;FLV文件中的一个Audio Tag Tag header AudioTagHeader AUDIODATA。本文讲述FFmpeg源码中是怎样解码Audio Tag的AudioTagHead…...

前端零基础入门到上班:【Day3】从零开始构建网页骨架HTML

HTML 基础入门&#xff1a;从零开始构建网页骨架 目录 1. 什么是 HTML&#xff1f;HTML 的核心作用 2. HTML 基本结构2.1 DOCTYPE 声明2.2 <html> 标签2.3 <head> 标签2.4 <body> 标签 3. HTML 常用标签详解3.1 标题标签3.2 段落和文本标签3.3 链接标签3.4 图…...

字符脱敏工具类

1、字符脱敏工具类 import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils;/*** 数据脱敏工具类** date 2024/10/30 13:44*/Slf4j public class DataDesensitizationUtils {public static final String STAR_1 "*";public static final …...

【jvm】jvm对象都分配在堆上吗

目录 1. 说明2. 堆上分配3. 栈上分配&#xff08;逃逸分析和标量替换&#xff09;4. 方法区分配5. 直接内存&#xff08;非堆内存&#xff09; 1. 说明 1.JVM的对象并不总是分配在堆上。2.堆是JVM用于存储对象实例的主要内存区域&#xff0c;存在一些特殊情况&#xff0c;对象…...

@AutoWired和 @Resource原理深度分析!

嗨&#xff0c;你好呀&#xff0c;我是猿java Autowired和Resource是 Java程序员经常用来实现依赖注入的两个注解&#xff0c;这篇文章&#xff0c;我们将详细分析这两个注解的工作原理、使用示例和它们之间的对比。 依赖注入概述 依赖注入是一种常见的设计模式&#xff0c;…...

C++设计模式创建型模式———原型模式

文章目录 一、引言二、原型模式三、总结 一、引言 与工厂模式相同&#xff0c;原型模式&#xff08;Prototype&#xff09;也是创建型模式。原型模式通过一个对象&#xff08;原型对象&#xff09;克隆出多个一模一样的对象。实际上&#xff0c;该模式与其说是一种设计模式&am…...

重学SpringBoot3-Spring WebFlux之SSE服务器发送事件

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ Spring WebFlux之SSE服务器发送事件 1. 什么是 SSE&#xff1f;2. Spring Boot 3 响应式编程与 SSE为什么选择响应式编程实现 SSE&#xff1f; 3. 实现 SSE 的基本步骤3.…...

YOLO即插即用模块---AgentAttention

Agent Attention: On the Integration of Softmax and Linear Attention 论文地址&#xff1a;https://arxiv.org/pdf/2312.08874 问题&#xff1a; 普遍使用的 Softmax 注意力机制在视觉 Transformer 模型中计算复杂度过高&#xff0c;限制了其在各种场景中的应用。 方法&a…...

探索开源语音识别的未来:高效利用先进的自动语音识别技术20241030

&#x1f680; 探索开源语音识别的未来&#xff1a;高效利用自动语音识别技术 &#x1f31f; 引言 在数字化时代&#xff0c;语音识别技术正在引领人机交互的新潮流&#xff0c;为各行业带来了颠覆性的改变。开源的自动语音识别&#xff08;ASR&#xff09;系统&#xff0c;如…...

学习路之TP6--workman安装

一、安装 首先通过 composer 安装 composer require topthink/think-worker 报错&#xff1a; 分析&#xff1a;最新版本需要TP8&#xff0c;或装低版本的 composer require topthink/think-worker:^3.*安装后&#xff0c; 增加目录 vendor\workerman vendor\topthink\think-w…...

.NET内网实战:通过白名单文件反序列化漏洞绕过UAC

01阅读须知 此文所节选自小报童《.NET 内网实战攻防》专栏&#xff0c;主要内容有.NET在各个内网渗透阶段与Windows系统交互的方式和技巧&#xff0c;对内网和后渗透感兴趣的朋友们可以订阅该电子报刊&#xff0c;解锁更多的报刊内容。 02基本介绍 03原理分析 在渗透测试和红…...

AI Agents - 自动化项目:计划、评估和分配

Agents: Role 角色Goal 目标Backstory 背景故事 Tasks&#xff1a; Description 描述Expected Output 期望输出Agent 代理 Automated Project: Planning, Estimation, and Allocation Initial Imports 1.本地文件helper.py # Add your utilities or helper functions to…...

Git的.gitignore文件

一、各语言对应的.gitignore模板文件 项目地址&#xff1a;https://github.com/github/gitignore 二、.gitignore文件不生效 .gitignore文件只是ignore没有被追踪的文件&#xff0c;已被追踪的文件&#xff0c;要先删除缓存文件。 # 单个文件 git rm --cached file/path/to…...

网站安全,WAF网站保护暴力破解

雷池的核心功能 通过过滤和监控 Web 应用与互联网之间的 HTTP 流量&#xff0c;功能包括&#xff1a; SQL 注入保护&#xff1a;防止恶意 SQL 代码的注入&#xff0c;保护网站数据安全。跨站脚本攻击 (XSS)&#xff1a;阻止攻击者在用户浏览器中执行恶意脚本。暴力破解防护&a…...

深度学习:梯度下降算法简介

梯度下降算法简介 梯度下降算法 我们思考这样一个问题&#xff0c;现在需要用一条直线来回归拟合这三个点&#xff0c;直线的方程是 y w ^ x b y \hat{w}x b yw^xb&#xff0c;我们假设斜率 w ^ \hat{w} w^是已知的&#xff0c;现在想要找到一个最好的截距 b b b。 一条…...

SparkSQL整合Hive后,如何启动hiveserver2服务

当spark sql与hive整合后&#xff0c;我们就无法启动hiveserver2的服务了&#xff0c;每次都要先启动hive的元数据服务&#xff08;nohup hive --service metastore&#xff09;才能启动hive,之前的beeline命令也用不了&#xff0c;hiveserver2的无法启动&#xff0c;这也导致我…...

前端路由如何从0开始配置?vue-router 的使用

在 Web 开发中&#xff0c;路由是指根据 URL 的不同部分将请求分发到不同的处理函数或页面的过程。路由是单页应用&#xff08;SPA, Single Page Application&#xff09;和服务器端渲染&#xff08;SSR, Server-Side Rendering&#xff09;应用中的一个重要概念。 在开发中如何…...

Java中的运算符【与C语言的区别】

目录 1. 算术运算符 1.0 赋值运算符&#xff1a; 1.1 四则运算符&#xff1a; - * / % 【取余与C有点不同】 1.2 增量运算符&#xff1a; - * / % * 【右侧运算结果会自动转换类型】 1.3 自增、自减&#xff1a;、-- 2. 关系运算符 3. 逻辑运算符 3.1 短路求值 3.2 【…...

二、基础语法

入门了解 注释 **作用&#xff1a;**在代码中加一些注释和说明&#xff0c;方便自己或者其他程序员阅读代码 两种格式&#xff1a; 单行注释&#xff1a;// 描述信息 通常放在一行代码的上方&#xff0c;或者一条语句的末尾&#xff0c;对该行代码进行说明 多行注释&#x…...

DB-GPT系列(一):DB-GPT能帮你做什么?

DB-GPT是一个开源的AI原生数据应用开发框架(AI Native Data App Development framework with AWEL and Agents)&#xff0c;围绕大模型提供灵活、可拓展的AI原生数据应用管理与开发能力&#xff0c;可以帮助企业快速构建、部署智能AI数据应用&#xff0c;通过智能数据分析、洞察…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...