camera和lidar外参标定
雷达和相机的外参标定(外部参数标定)指的是确定两者之间的旋转和平移关系,使得它们的坐标系可以对齐。
文章目录
- 无目标标定
- livox_camera_calib
- direct_visual_lidar_calibration
- 有目标标定
- velo2cam_calibration
无目标标定
livox_camera_calib
litar_camera_calib是无目标环境中高分辨率 LiDAR(例如 Livox)和相机之间的强大、高精度外部校准工具。我们的算法可以在室内和室外场景中运行,并且只需要场景中的边缘信息。如果场景合适,我们可以达到类似于甚至超越基于目标的方法的像素级精度。

对场景有一定要求(沦落清晰的边角线+光线对比明显),操作上要求较高
该最终结果会是一个extrinsic.txt的文件:

direct_visual_lidar_calibration
这个项目提供了一个用于激光雷达-相机标定的工具箱,具有以下特点:
主要功能点
- 通用性强:可以处理各种激光雷达和相机投影模型,包括旋转和非重复扫描激光雷达,以及针孔、鱼眼和全景相机。
- 无需标定目标:不需要使用标定目标,而是利用环境结构和纹理进行标定。
单次标定:最少只需要一对激光雷达点云和相机图像即可完成标定,也可以使用多对数据来提高精度。 - 自动化:标定过程是自动的,不需要初始猜测。
- 精确可靠:采用像素级直接激光雷达-相机配准算法,比基于边缘的间接配准更加可靠和精确。

有目标标定
velo2cam_calibration



相关文章:
camera和lidar外参标定
雷达和相机的外参标定(外部参数标定)指的是确定两者之间的旋转和平移关系,使得它们的坐标系可以对齐。 文章目录 无目标标定livox_camera_calibdirect_visual_lidar_calibration 有目标标定velo2cam_calibration 无目标标定 livox_camera_ca…...
Redis慢查询分析优化
文章目录 一、定义二、慢查询参数配置三、慢查询日志四、排查步骤五、Redis变慢原因 一、定义 在Redis执行时耗时超过某个阈值的命令,称为慢查询。 慢查询日志帮助开发和运维人员定位系统存在的慢操作。慢查询日志就是系统在命令执行前后计算每条命令的执行时间&…...
ETL处理全流程
ETL代表提取Extraction、转换Transform、加载Load——这个过程涉及从各种来源提取数据,将其转换为一致的格式,并将其加载到目标数据库或数据仓库中。这是数据集成和分析的一个重要步骤,因为它确保数据准确、可靠,并准备好进一步处…...
美畅物联丨掌握Wireshark:GB28181协议报文分析实战指南
Wireshark,一款在网络安全与协议分析领域享有盛誉的网络嗅探器,凭借其强大的功能集、直观的图形用户界面以及广泛的跨平台兼容性,已成为众多开发者不可或缺的得力助手。其开源特性吸引了大量开发者的积极参与,不断推动其功能的完善…...
【python】OpenCV—WaterShed Algorithm
文章目录 1、功能描述2、代码实现3、完整代码4、效果展示5、涉及到的库函数5.1、cv2.pyrMeanShiftFiltering5.2、cv2.morphologyEx5.3、cv2.distanceTransform5.4、cv2.normalize5.5、cv2.watershed 6、更多例子7、参考 1、功能描述 基于分水岭算法对图片进行分割 分水岭分割…...
CSS flex布局- 最后一个元素占满剩余可用高度转载
效果图 技术要点 height父元素必须有一个设定的高度flex-grow: 1 flex 盒子模型内的该元素将会占据父容器中剩余的空间F12检查最后一行的元素,高度就已经改变了;...
Camp4-L1:XTuner 微调个人小助手认知
书生浦语大模型实战营第四期-XTuner 微调个人小助手认知 教程链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/README.md任务链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/task.md提交链接:…...
Qt:语言家视图
1.一不小心将qt语言家点成这样 2.点击查看->视图 3.效果...
【Paper Note】利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位
利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位 摘要核心模块什么是边界?什么是边界特征? 写作背景解决的问题 方法1. 特征提取使用预训练好的自监督学习模型进行前端特征提取Attentive poolingQ:为什么使用Attentive …...
海外共享奶牛牧场投资源码-理财金融源码-基金源码-共享经济源码
新版海外共享奶牛牧场投资源码/理财金融源码/基金源码/共享经济源码...
iOS静态库(.a)及资源文件的生成与使用详解(OC版本)
引言 iOS静态库(.a)及资源文件的生成与使用详解(Swift版本)_xcode 合并 .a文件-CSDN博客 在前面的博客中我们已经介绍了关于iOS静态库的生成步骤以及关于资源文件的处理,在本篇博客中我们将会以Objective-C为基础语言…...
Python自动化:关键词密度分析与搜索引擎优化
在数字营销领域,搜索引擎优化(SEO)是提升网站可见性和吸引有机流量的关键。关键词密度分析作为SEO的一个重要组成部分,可以帮助我们理解特定关键词在网页内容中的分布情况,从而优化网页内容以提高搜索引擎排名。本文将…...
苏州金龙新V系客车创新引领旅游出行未来
10月25日,为期三天的“2024第六届旅游出行大会”在风景秀丽的云南省丽江市落下帷幕。本次大会由中国旅游车船协会主办,全面展示了中国旅游出行行业最新发展动态和发展成就,为旅游行业带来全新发展动力。 在大会期间,备受瞩目的展车…...
linux:DNS服务
DNS简介: DNS系统使用的是网络的查询,那么自然需要有监听的port。DNS使用的是53端口, 在/etc/services(搜索domain)这个文件中能看到。通常DNS是以UDP这个较快速的数据传输协议来查 询的,但是没有查询到完…...
传奇架设好后创建不了行会,开区时点创建行会没反应的解决办法
传奇架设好后,测试了版本,发现行会创建不了,按道理说一般的版本在创建行会这里不会出错的,因为这是引擎自带的功能。 建立不了行会虽然说问题不大,但也不小,会严重影响玩家的游戏体验,玩游戏为的…...
【小白学机器学习28】 统计学脉络+ 总体+ 随机抽样方法
目录 参考书,学习书 0 统计学知识大致脉络 1 个体---抽样---整体 1.1 关于个体---抽样---整体,这个三段式关系 1.2 要明白,自然界的整体/母体是不可能被全部认识的 1.2.1 不要较真,如果是人为定义的一个整体,是可…...
安全研究 | 不同编程语言中 IP 地址分类的不一致性
作为一名安全研究人员,我分析了不同编程语言中 IP 地址分类 的行为。最近,我注意到一些有趣的不一致性,特别是在循环地址和私有 IP 地址的处理上。在这篇文章中,我将分享我对此问题的观察和见解。 设置 我检查了多种编程语言&am…...
小小的表盘还能玩出这么多花样?华为手表这次细节真的拉满
没想到小小的表盘还能玩出这么多花样?华为这次细节真的拉满!还有没有你不知道的神奇玩法? 情绪萌宠,心情状态抬腕可见 好心情就像生活馈赠的糖果,好的心情让我们遇到困难也不惧打击!HUAWEI WATCH GT 5情绪…...
trueNas 24.10 docker配置文件daemon.json无法修改(重启被覆盖)解决方案
前言 最近听说truenas的24.10版本开放docker容器解决方案放弃了原来难用的k3s,感觉非常巴适,就研究了一下,首先遇到无法迁移老系统应用问题比较好解决,使用sudo登录ssh临时修改daemon.json重启docker后进行docker start 容器即可…...
数字孪生,概念、应用与未来展望
随着科技的飞速发展,数字化已经成为各行各业的发展趋势,在这个过程中,数字孪生作为一种新兴的技术,逐渐引起了人们的关注,本文将对数字孪生的概念、应用以及未来展望进行详细介绍。 数字孪生的概念: 数字孪…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
