下跌多少才能涨回来?
文章目录
- 上涨下跌函数关系
- 函数图形
- 数学分析
上涨下跌函数关系
最近炒股很热,对于股票来说,有个很重要的参数涨跌幅,那么下跌多少才能涨回来?这个不需要太深的知识就可以计算出来,下跌和上涨不是等价的,下跌了50%,需要上涨100%才能追回来。所以下跌与上涨的关系,就特别值得研究了。
假设下跌了x,那么需要上涨y才能追回来,假设初始为1,那么这个函数关系就是这样的:
( 1 − x ) ( 1 + y ) = 1 1 + y = 1 1 − x y = 1 1 − x − 1 \begin{align} (1-x)(1+y)=1\\ 1+y = \frac{1}{1-x}\\ y= \frac{1}{1-x} - 1\\ \end{align} (1−x)(1+y)=11+y=1−x1y=1−x1−1
那么,如果x=0.5,y=1,那么需要上涨1倍才能追回来。什么时候x=y呢?可以很容易算出来:
( 1 − x ) ( 1 + y ) = 1 y = x → 1 − x 2 = 1 → x = 0 \begin{align} (1-x)(1+y)=1\\ y=x\\ \to 1-x^2=1\\ \to x=0 \end{align} (1−x)(1+y)=1y=x→1−x2=1→x=0
函数图形
这就是一个残忍的现实,除了0点,y永远大于x,上涨幅度要大于下跌幅度,才能追回来。所以在金融中控制风险比盈利更加重要。在笛卡尔坐标系上可以看出来,下面是我用python写的绘图代码:
import matplotlib.pyplot as plot
import numpy as npif __name__ == "__main__":plot.figure(figsize=[5,5])xarray = np.linspace(0, 0.6, 100, endpoint=False) -0yarray =1/(1-xarray)-1plot.plot(xarray,yarray)plot.plot(xarray, xarray)plot.xlabel("x")plot.ylabel("y")plot.grid(True)plot.gca().set_aspect(1)plot.show()
函数关系图如下:

数学分析
光看图像是不严谨的,对这个函数求导,可以知道答案:首先,后面的常数可以忽略,也就是只需要求 y = 1 1 − x y = \frac{1}{1-x} y=1−x1的导数。然后, 利用商的导数公式:
( u v ) ′ = u ′ v − u v ′ v 2 \left( \frac{u}{v} \right)^{\prime} = \frac{u^{\prime}v - uv^{\prime}}{v^2} (vu)′=v2u′v−uv′,其中 u = 1 u = 1 u=1 和 v = 1 − x v = 1 - x v=1−x,我们有: u ′ = 0 u^{\prime} = 0 u′=0, v ′ = d d x ( 1 − x ) = − 1 v^{\prime} = \frac{d}{dx}(1 - x) = -1 v′=dxd(1−x)=−1 代入商的导数公式,得到:
y ′ = − 1 ⋅ ( − 1 ) ( 1 − x ) 2 = 1 ( 1 − x ) 2 \begin{align} y^{\prime} = \frac{- 1 \cdot (-1)}{(1 - x)^2}\\ = \frac{1}{(1 - x)^2} \end{align} y′=(1−x)2−1⋅(−1)=(1−x)21 所以,函数 y = 1 1 − x − 1 y = \frac{1}{1-x} - 1 y=1−x1−1 的导数为 y ′ = 1 ( 1 − x ) 2 ≥ 1 y^{\prime} = \frac{1}{(1 - x)^2}\ge 1 y′=(1−x)21≥1。这个导数是大于1的。它的导数图像如下:

最后希望大家都在股市发财。
相关文章:
下跌多少才能涨回来?
文章目录 上涨下跌函数关系函数图形数学分析 上涨下跌函数关系 最近炒股很热,对于股票来说,有个很重要的参数涨跌幅,那么下跌多少才能涨回来?这个不需要太深的知识就可以计算出来,下跌和上涨不是等价的,下跌…...
【AAOS】【源码分析】CarSystemUI -- CarSystemBar
CarSystemBar不像Android手机那样固定的顶部“状态栏”和底部“导航栏”,而是将StatusBar和NavigationBar都统称为SystemBar,可以通过如下配置为每侧最多配置一个“系统栏”。 packages/apps/Car/SystemUI/res/values/config.xml<!-- Configure which system bars should …...
[供应链] 邀请招标
1.邀请招标定义 邀请招标(Invitation to Bid by Request) 也称为有限竞争性招标(limited Competitive Bidding)或选择性招标(Selected Bidding) 邀请招标的采购方式下,采购人(如政府机构、企业或其他组织)不是公开发布招标信息,而是根据供应商或承包商…...
VS2017+Qt5.12.9+CMake3.30.2编译VTK 9.2.0
一.准备工作 vs2017,QT,Cmake自行下载准备, VTK下载地址 1.官网下载 2.github下载 二.编译VTK源码 1.个人习惯创建以下目录,一个源码目录,Build为vs解决方案输出目录和编译输出以及中间生成文件目录 2.cmake基础…...
Java线程CPU占用过高如何排查?
使用ps命令查看java进程详细信息: ps aux | grep java使用top命令查看系统进程占用情况 top使用jstack命令导出Java进程的堆栈信息 jstack pid | grep tid -A 10 "java.lang.Thread.State" > gc.log找出占用cpu最高的线程id: top -Hp -d 1 …...
uniapp推送配置流程
Dcloud Dcloud注册账号 个推 了解即可 注册个推账号 ios配置流程 需配置含有推送的描述文件以及p8证书 配置推送证书 ios证书配置报技术错误(参数错误) TeamID-苹果开发者账号唯一的ID 安卓需配置多厂商 小米手机需要配置小米厂商 华为手机则需…...
qt QPicture详解
1、概述 QPicture类是Qt框架中的一个重要图形类,它主要用于记录和回放QPainter的绘图指令。这个类能够跨平台、无分辨率依赖地绘制图形,非常适合用于实现打印预览和图像操作等场景。QPicture可以将绘图操作序列化为一种独立于平台的格式,保存…...
ScheduledFuture Source Code Analysis
ScheduledFuture Overview is a delayed result-bearing action, 可以被cancel.通常是在ScheduledExecutorService里面schedule一个task, 然后ScheduledFuture是其task执行接受后的返回结果。 Code Analysis 继承于两个接口: extends Delayed, Future一些继承ch…...
【CSS】CSS 样式重置 (normalize.css 和 reset.css) 和通用样式配置
一般来说,每一个项目初始化阶段都需要样式重置和样式定制化。样式重置最常用的就是 normalize.css 和 reset.css 这两个文件。 他们的区别: Normalize.css更加注重保留有用的浏览器默认样式,仅修复浏览器之间的不一致性,适用于需…...
自动化机器学习(AutoML)详解
自动化机器学习(AutoML)详解 引言 在数据驱动的时代,将庞大的数据集转化为有价值的洞察和预测模型是众多组织的首要任务。然而,传统的机器学习流程复杂且耗时,包括数据预处理、特征选择、模型选择、调参以及模型评估…...
Linux: network:erspan0
文章目录 问题介绍生成时间:代码Linux引入后面NONE是怎么生成的问题 最近看到一个网卡是erspan0,不知道是做什么用的: # ip -d link show erspan0 7: erspan0@NONE: <BROADCAST,MULTICAST> mtu 1450 qdisc noop state DOWN mode DEFAULT group default qlen 10000...
第11课 计算思维
从二级考试开始,计算思维基本上以编程题的形式考察。为了避免一看就会,一写就废的情况,需要我们加强编程练习,把学到的知识,通过实战练习,变成自己的本领。 同一道题,一般会有多种解决方法&…...
ACL, ACL Workshop, ACL Findings 解释
ACL(Annual Conference of the Association for Computational Linguistics)是自然语言处理(NLP)领域的顶级会议之一,但确实有多个与ACL相关的会议和出版物,具体如下: ACL Main Conference&…...
《使用Gin框架构建分布式应用》阅读笔记:p272-p306
《用Gin框架构建分布式应用》学习第15天,p272-p306总结,总35页。 一、技术总结 1.TDD(test-driven development) 虽然经常看到TDD这个属于,从本人的工作经历看,实际开发中用得相对较少。 2.unitest(单元测试) go语言开发中&a…...
【搜索引擎】俄罗斯搜索引擎yandex
俄罗斯搜索引擎yandex 1997年,俄罗斯搜索引擎Yandex(俄语意为:语言目录)首次上线,已发展成为全球第四大搜索引擎和第二大非英语搜索引擎 https://yandex.com/...
加密源代码|html代码如何加密保护?3分钟学会4种源代码加密妙招,代码人必看
你是否曾担心过自己的源代码被轻易复制或篡改? 在这个开源和共享盛行的时代,如何加密源代码,成为了每个开发者不得不面对的问题。 古人云:“工欲善其事,必先利其器。”今天,我们就来探讨一下如何加密保护你…...
Jetson Orin NX平台自研载板 IMX477相机掉线问题调试记录
1. 前言 平台: NVIDIA Orin NX 硬件: 自研载板 相机: 3个IMX477树莓派HQ摄像头通过CSI接口连接 版本: L4T 35.4.1(我们也在35.5.0上测试了一些东西) 参数: 30fps,4032x3040 问题描述: 其中一个IMX477相机在录制过程中出现可变时间后退出 短则10秒,长则5小时,…...
spring-boot(整合mybatisplus、及常见注解)
介绍 在日常开发中单表的CRUD功能代码重复度很高,也没有什么难度。而这部分代码量往往比较大,开发起来比较费时。 目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是MybatisPlus. MyBatisPlus是针对于Mybatis框架的增强,即合…...
深度学习:yolov3的使用--建立模型
使用argparse模块来定义和解析命令行参数 创建一个ArgumentParser对象 parser argparse.ArgumentParser() 训练的轮数,每批图像的大小,更新模型参数之前累积梯度的次数,模型定义文件的路径。 parser.add_argument("--epochs", typeint, d…...
关于我、重生到500年前凭借C语言改变世界科技vlog.13——深入理解指针(3)
文章目录 1.字符指针变量2.数组指针变量3.函数指针变量4.函数指针数组5.二维数组传参本质6.拓展补充希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 本章节接着学习常见的指针变量类型 1.字符指针变量 字符指针变量,顾名思义就是字…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
