当前位置: 首页 > news >正文

八大排序算法——堆排序

目录

前言

一、向上调整算法建堆

二、向下调整算法建堆 

三、堆排序


前言

        堆排序是基于堆结构的一种排序思想,因此要为一个乱序的数组进行排序的前提是数组必须要是一个堆,所以要先对数组进行建堆操作


一、向上调整算法建堆

        时间复杂度:O( n*logn )

         由于向上调整算法建堆的时间复杂度的证明太过晦涩难懂,还要涉及数学中的错位相减法,所以这里就不证明了,感兴趣的可以自己去了解一下

        这里只需要知道向上调整算法建堆的时间复杂度为 O( n*logn )

//交换两个数的位置
void sweap(int* num1, int* num2)
{int tmp = *num1;*num1 = *num2;*num2 = tmp;
}
//向上调整算法(大根堆)
void AdjustUp(int* arr, int pos)
{//当前调整的位置不能是堆顶if (pos == 0){return;}//寻找双亲节点int parents = (pos - 1) / 2;//当前位置与双亲节点进行比较//如果当前位置的数大于双亲节点,就进行交换,并且继续向上调整//如果当前位置的数小于双亲节点,表示堆已经构建好了if (arr[parents] < arr[pos]){//交换两个数位置sweap(&arr[parents], &arr[pos]);//继续向上调整AdjustUp(arr, parents);}
}
int main()
{//给定一个乱序数组int arr[] = { 8,3,2,6,7,1,4,9,5 };//计算数组元素个数int size = sizeof(arr) / sizeof(arr[0]);//向上调整算法建堆//从前往后依次调整建堆//先让节点之前的数为堆,然后整体为堆for (int i = 0; i < size; i++){AdjustUp(arr, i);}return 0;
}

二、向下调整算法建堆 

         时间复杂度:O( n )

        由于向下调整算法建堆的时间复杂度的证明太过晦涩难懂,还要涉及数学中的错位相减法,所以这里就不证明了,感兴趣的可以自己去了解一下

        这里只需要知道向下调整算法建堆的时间复杂度为 O( n )        

//交换两个数的位置
void sweap(int* num1, int* num2)
{int tmp = *num1;*num1 = *num2;*num2 = tmp;
}
//向下调整算法(大根堆)
void AdjustDown(int* arr, int size, int pos)
{//左孩子位置int child = pos * 2 + 1;//向下调整算法,直到左孩子位置大于数组个数if (child < size){//选出左右孩子中最大的那个孩子if (child + 1 < size && arr[child] < arr[child + 1]){child++;}//与当前位置进行比较//如果左右孩子中最大数大于当前位置的数,就进行交换,并且继续向下调整//如果左右孩子中最大数小于当前位置的数,表示堆已经调整好了if (arr[child] > arr[pos]){//交换两个数的位置sweap(&arr[pos], &arr[child]);//继续向下调整AdjustDown(arr, size, child);}}
}
int main()
{//给定一个乱序数组int arr[] = { 8,3,2,6,7,1,4,9,5 };//计算数组元素个数int size = sizeof(arr) / sizeof(arr[0]);//向上调整算法建堆//从最后一个叶子节点父节点往前依次调整建堆//先让节点的左右子树为堆,然后整体为堆int pos = (size - 1) / 2;//最后一个叶子节点父节点for (int i = pos; i >= 0; i--){AdjustDown(arr, size, i);}return 0;
}

三、堆排序

         时间复杂度:O( n*logn )

         在进行建堆操作时我们可以选择向上调整算法和向下调整算法,但是由于向下调整算法的时间复杂度要优于向上调整算法,因此更推荐使用向下调整算法建堆

        建堆的时间复杂度为O( n )每次调整的堆结构的时间复杂度为O( logn ) ,因此整体时间复杂度为O( n*logn )

堆排序的过程大致如下:

  1. 将待排序的数组构造成一个大顶堆(或小顶堆,根据需要)。此时,整个数组的最大值(或最小值)就是堆结构的顶端
  2. 将顶端的数与末尾的数交换。此时,末尾的数为最大值(或最小值),剩余待排序数组个数为n-1
  3. 将剩余的n-1个数再构造成大顶堆(或小顶堆),再将顶端数与n-1位置的数交换。如此反复执行,便能得到有序数组

【注意】

  • 排升序要建大堆
  • 排降序要建小堆 

        整体代码实现 

//交换两个数的位置
void sweap(int* num1, int* num2)
{int tmp = *num1;*num1 = *num2;*num2 = tmp;
}//向下调整算法(大根堆)
void AdjustDown(int* arr, int size, int pos)
{//左孩子位置int child = pos * 2 + 1;//向下调整算法,直到左孩子位置大于数组个数if (child < size){//选出左右孩子中最大的那个孩子if (child + 1 < size && arr[child] < arr[child + 1]){child++;}//与当前位置进行比较//如果左右孩子中最大数大于当前位置的数,就进行交换,并且继续向下调整//如果左右孩子中最大数小于当前位置的数,表示堆已经调整好了if (arr[child] > arr[pos]){//交换两个数的位置sweap(&arr[pos], &arr[child]);//继续向下调整AdjustDown(arr, size, child);}}
}//堆排序——升序
void HeapSort(int* arr, int size)
{//从后往前依次调整建堆//先让节点的左右子树为堆,然后整体为堆int pos = (size - 1) / 2;//最后一个叶子节点父节点for (int i = pos; i >= 0; i--){//向下调整建堆AdjustDown(arr, size, i);}//堆排序//排升序要建大堆//排降序要建小堆for (int i = 0; i < size; i++){//堆顶与最后一个有效元素交换位置sweap(&arr[0], &arr[size - 1 - i]);//向下调整,保持堆的结构AdjustDown(arr, size - i - 1, 0);}
}int main()
{//给定一个乱序数组int arr[] = { 8,3,2,6,7,1,4,9,5 };//计算数组元素个数int size = sizeof(arr) / sizeof(arr[0]);//堆排序HeapSort(arr, size);//打印排序后的数据for (int i = 0; i < size; i++){printf("%d ", arr[i]);}return 0;
}

 

相关文章:

八大排序算法——堆排序

目录 前言 一、向上调整算法建堆 二、向下调整算法建堆 三、堆排序 前言 堆排序是基于堆结构的一种排序思想&#xff0c;因此要为一个乱序的数组进行排序的前提是数组必须要是一个堆&#xff0c;所以要先对数组进行建堆操作 一、向上调整算法建堆 时间复杂度&#xff1a;O…...

U盘文件不翼而飞?这些数据恢复工具帮你找回!

U盘因其便携性是我们日常工作和生活中不可或缺的工具。不过有时候它也会出点小状况。如果你U盘里的数据突然不见了&#xff0c;不要着急&#xff0c;可以先试试这几款数据恢复工具&#xff01; 福昕数据恢复 直达链接&#xff1a;www.pdf365.cn/foxit-restore/ 操作教程&…...

在Java中 try catch 会影响性能吗?

1、在Java中&#xff0c;异常处理确实会对性能产生影响&#xff0c;但在正常执行的代码路径中&#xff0c;即没有发生异常的情况下&#xff0c;try-catch块的性能影响是微不足道的 2、但是&#xff0c;如果出现异常被抛出时&#xff0c;Java虚拟机需要执行一些额外的操作来处理…...

吞吐量最高飙升20倍!破解强化学习训练部署难题

**强化学习&#xff08;RL&#xff09;对大模型复杂推理能力提升有关键作用&#xff0c;然而&#xff0c;RL 复杂的计算流程以及现有系统局限性&#xff0c;也给训练和部署带来了挑战。近日&#xff0c;字节跳动豆包大模型团队与香港大学联合提出 HybridFlow&#xff08;开源项…...

redis的数据过期策略

Redis对数据设置了数据的有效时间,数据过期之后,就需要将数据从内存中删除掉.可以按照不同的规则进行删除,这种删除规则就被称之为数据的删除策略(数据过期策略),而这种策略有两种:惰性删除和定期删除 惰性删除:设置key过期时间后,我们不去管它,当需要该key时,我们在检查其是否…...

三周精通FastAPI:27 使用使用SQLModel操作SQL (关系型) 数据库

官网文档&#xff1a;https://fastapi.tiangolo.com/zh/tutorial/sql-databases/ SQL (关系型) 数据库 FastAPI不需要你使用SQL(关系型)数据库。 但是您可以使用任何您想要的关系型数据库。 这里我们将看到一个使用SQLModel的示例。 SQLModel是在SQLAlchemy和Pydantic的基础…...

Kubernetes金丝雀发布

华子目录 Canary金丝雀发布什么是金丝雀发布Canary发布方式基于header&#xff08;http包头&#xff09;灰度发布基于权重的金丝雀发布 Canary金丝雀发布 什么是金丝雀发布 金丝雀发布也称为灰度发布&#xff0c;是一种软件发布策略主要目的是在将新版本的软件全面推广到生产环…...

树形DP讲解

文章目录 树形DP讲解一、引言二、树形DP基础1、树的定义2、树形DP的基本思想3、代码示例&#xff1a;子树大小 三、经典例题解析1、树的平衡点1.1、代码示例 2、没有上司的舞会&#xff08;树的最大独立集&#xff09;2.1、代码示例 四、总结 树形DP讲解 一、引言 树形动态规…...

容器:如何调试容器

调试容器&#xff0c;主要是指的调试Dockerfile&#xff0c;调试Dockerfile中的各个命令的执行&#xff0c;大小等 1、docker history查看构建过程和所有的中间层 2、docker run rm -it -u root XXX sh&#xff0c;通过临时容器的方式启动&#xff0c;可以调试中间层文件 3、do…...

用图说明 CPU、MCU、MPU、SoC 的区别

CPU CPU 负责执行构成计算机程序的指令&#xff0c;执行这些指令所指定的算术、逻辑、控制和输入/输出&#xff08;I/O&#xff09;操作。 MCU (microcontroller unit) 不同的 MCU 架构如下&#xff0c;注意这里的 MPU 表示 memory protection unit MPU (microprocessor un…...

牛客周赛 Round 65

文章目录 超市思路&#xff1a;Solved&#xff1a; 雨幕思路&#xff1a;Solved&#xff1a; 闺蜜思路&#xff1a;Solved&#xff1a; 医生思路&#xff1a;Solved&#xff1a; 降温&#xff08;easy&#xff09;思路&#xff1a;Solved&#xff1a; F-降温&#xff08;hard&a…...

超级经典的79个软件测试面试题(内含答案)

1、软件的生命周期(prdctrm) 计划阶段(planning)-〉需求分析(requirement)-〉设计阶段(design)-〉编码(coding)->测试(testing)->运行与维护(running maintrnacne) 测试用例 用例编号 测试项目 测试标题 重要级别 预置条件 输入数据 执行步骤 预期结果 2、问&#xf…...

【Mac】安装 F5-TTS

1、下载项目 项目地址&#xff1a;【GitHub】 SWivid F5-TTS 2、创建并激活 Python 虚拟环境 # 创建 Python 虚拟环境 userMac F5-TTS-main % python3 -m venv f5-tts# 激活进入 Python 虚拟环境 userMac F5-TTS-main % source f5-tts/bin/activate (f5-tts) userrMac F5-TT…...

Leaflet查询矢量瓦片偏移的问题

1、问题现象 使用Leaflet绘制工具查询出来的结果有偏移 2、问题排查 1&#xff09;Leaflet中latLngToContainerPoint和latLngToLayerPoint的区别 2&#xff09;使用Leaflet查询需要使用像素坐标 3&#xff09;经排查发现&#xff0c;container获取的坐标是地图容器坐标&…...

存储引擎技术进化

B-tree 目前支撑着数据库产业的半壁江山。 50 年来不变而且人们还没有改变它的意向 鉴定一个算法的优劣&#xff0c;有一个学派叫 IO复杂度分析 &#xff0c;简单推演真假便知。 下面就用此法分析下 B-tree(traditional b-tree) 的 IO 复杂度&#xff0c;对读、写 IO 一目了…...

CentOS 9 Stream 上安装 Maven

CentOS 9 Stream 上安装 Maven 在 CentOS 9 Stream 上安装 Maven&#xff0c;可以按照以下步骤进行&#xff1a; 更新系统软件包&#xff1a; sudo dnf update安装 Maven&#xff1a; CentOS 9 Stream 默认的包管理器中已经包含 Maven&#xff0c;你可以直接安装&#xff1a; s…...

强势改进!TCN-Transformer时间序列预测

强势改进&#xff01;TCN-Transformer时间序列预测 目录 强势改进&#xff01;TCN-Transformer时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现TCN-Transformer时间序列预测&#xff1b; 2.运行环境为Matlab2023b&#xff1b; 3.单个变量时间序…...

MyBatis的不同参数传递封装

MyBatis参数传递 传参方式 1. 使用 #{} 占位符 这是 MyBatis 中最常用的参数传递方式。它将参数直接替换到 SQL 语句中的占位符位置。 单个参数&#xff1a; <select id"selectUserById" resultType"User">SELECT * FROM users WHERE id #{id}…...

kotlin 协程方法总结

Kotlin 协程是一套强大的异步编程工具&#xff0c;以下是对 Kotlin 协程常用方法的总结&#xff1a; 1. 协程构建器 launch: 启动一个新的协程&#xff0c;不阻塞当前线程&#xff0c;返回一个 Job 对象。 GlobalScope.launch {// 协程体}async: 启动一个新的协程并返回一个…...

脉冲当量计算方法

脉冲的概念&#xff1a; 脉冲当量是指控制器输出一个定位控制脉冲时&#xff0c;所产生的定位控制移动的位移。在直线运动中&#xff0c;它表示移动的距离&#xff1b;在圆周运动中&#xff0c;它表示转动的角度。简而言之&#xff0c;脉冲当量就是电机接收一个脉冲信号后能够移…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...