当前位置: 首页 > news >正文

动态规划——两个数组的dp问题

目录

一、最长公共子序列

二、不同的子序列

三、通配符匹配

四、正则表达式匹配

五、两个字符串的最小ASCII删除和

六、最长重复子数组

七、交错字符串


一、最长公共子序列

最长公共子序列

第一步:确定状态表示

dp[i][j]:表示字符串 s1 的 [0,i] 区间以及字符串 s2 的[0,j] 区间内所有子序列中,最长公共子序列的长度。

第二步:推出状态转移方程

第三步:初始化dp表

关于字符串的 dp 问题,我们需要考虑空串的情况,比如 s1 选一个空串,s2 选一个空串,其实也属于是一个公共子序列,不过公共子序列长度为0。

我们可以在原始 dp 表上多加一行一列,第0行表示第一个字符串为空,第0列表示第二个字符串为空。

让dp表多加了一行和一列后,我们需要注意dp表的下标和字符串下标的对应关系。 

解题代码:

class Solution 
{
public:int longestCommonSubsequence(string s1, string s2) {int m = s1.size(), n = s2.size();vector<vector<int>> dp(m+1, vector<int>(n+1));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(s1[i-1] == s2[j-1])dp[i][j] = dp[i-1][j-1] + 1;elsedp[i][j] = max(dp[i-1][j], max(dp[i][j-1], dp[i-1][j-1]));}}return dp[m][n];}
};

 


二、不同的子序列

不同的子序列

第一步:确定状态表示

dp[i][j]:表示s字符串 [0,i]区间内所有子序列中,有多少个t字符串 [0,j] 区间内的子串。

第二步:推出状态转移方程

第三步:初始化dp表。

我们需要考虑空串的情况,比如 s1 选一个空串,s2 选一个空串,其实也属于是一个公共子序列。

第一行表示 s 字符串为空串,s 如果是空串,t 只有是空串,才能在 s 中找到 t。第一列表示 t 字符串为空串,t 如果是空串,s 不管是什么字符串,它里面都有一个空串。因此第一列应该全都是1。

解题代码:

class Solution 
{
public:int numDistinct(string s, string t){int m = s.size(), n = t.size();vector<vector<double>> dp(m+1, vector<double>(n+1));for(int i = 0; i <= m; i++)dp[i][0] = 1;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){dp[i][j] += dp[i-1][j];if(s[i-1] == t[j-1])dp[i][j] += dp[i-1][j-1];}}return dp[m][n];}
};

 


三、通配符匹配

通配符匹配

第一步: 确定状态表示

dp[i][j]:表示p[0,i] 区间内的子串能否匹配 s[0,j] 区间内的子串。

第二步:推出状态转移方程

第三步:初始化dp表

如果s是空字符串,p字符串前面出现 ’ * ‘ 可以匹配空串,但是 ’ * ‘ 之后如果出现其他字符了,后面不管有多少个’ * '都不能匹配了。

dp[i][j]表示p[0,i] 区间内的子串能否匹配 s[0,j] 区间内的子串。题目要求是整个字符串,因此返回dp[m][n],m是s的长度,n是p的长度。

解题代码:

class Solution 
{
public:bool isMatch(string s, string p) {int m = p.size(), n = s.size();vector<vector<bool>> dp(m+1, vector<bool>(n+1, false));dp[0][0] = true;for(int i = 1; i <= m; i++){if(p[i-1] == '*')dp[i][0] = true;elsebreak;}for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(p[i-1] == '?')dp[i][j] = dp[i-1][j-1];else if(p[i-1] == '*')dp[i][j] = dp[i][j-1] || dp[i-1][j];else{if(p[i-1] == s[j-1] && dp[i-1][j-1])dp[i][j] = true;}}}return dp[m][n];}
};

 


四、正则表达式匹配

正则表达式匹配

第一步:确定状态表示

dp[i][j]:表示 p[0,i] 区间内的子串能否匹配 s[0,j] 区间内的字符串。

第二步:推出状态转移方程

第三步:初始化dp表

dp表上面多加一行表示p是空串,左边多加一列表示s是空串。接下来看看里面值应该填什么。

对于第一行,如果p是空串,s也是空串,肯定能匹配,所以第一行第一个空格还是true。

后续如果 p 是空串,s不是空串,肯定匹配不上,所以第一行后续都是false。

解题代码:

class Solution 
{
public:bool isMatch(string s, string p) {int m = p.size(), n = s.size();vector<vector<bool>> dp(m+1, vector<bool>(n+1));dp[0][0] = true;s = ' ' + s;p = ' ' + p;for(int i = 2; i <= m; i++){if(p[i] != '*' && p[i-1] != '*')break;if(p[i] == '*' && p[i-1] != '*')dp[i][0] = true;}for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(p[i] >= 'a' && p[i] <= 'z'){if(p[i] == s[j] && dp[i-1][j-1] == true)dp[i][j] = true;}else if(p[i] == '.')dp[i][j] = dp[i-1][j-1];else{if(p[i-1] == '.')dp[i][j] = dp[i-2][j] || dp[i][j-1];elsedp[i][j] = dp[i-2][j] || (s[j] == p[i-1] && dp[i][j-1]);}}}return dp[m][n];}
};

 


五、两个字符串的最小ASCII删除和

两个字符串的最小ASCII删除和

预处理:本道题是让我们找使两个字符串相等,所需删除字符的ASCII值最小。而最开始的两个字符串的ASCII值总和是不变的,那么我们只需要找到两个字符串相同后,其ASCII值最大,那么删除的字符的ASCII值一定就是最小的。

所以说,该问题就转化成了:求两个字符串的所有公共子序列里面,ASCII值的最大和。

第一步:确定状态表示

dp[i][j]:表示字符串 s1 的 [0,i] 区间以及字符串 s2 的 [0,j] 区间内的所有公共子序列中, ASCII值最大和。

第二步:推出状态转移方程

对于s1[0,i]区间和s2[0,j]区间的公共子序列有四种情况,即:

有s1[i],有s2[j]

有s1[i],没有s2[j]

没有s1[i],有s2[j]

没有s1[i],没有s2[j]

情况四可以包含在情况二中。

第三步:初始化dp表

第四步:确定返回值

状态表示求的是两个字符串的区间里面公共子序列的ASCII值最大和。

而题目要求使两个字符串相等所需删除字符的ASCII值的最小和 。所以可以这样做:

1、找到两个字符串中公共子序列的Ascll 最大和,dp[m][n]。

2、统计两个字符串中ASCII值总和,sum。

3、sum - dp[m][n] * 2。

解题代码:

class Solution 
{
public:int minimumDeleteSum(string s1, string s2) {int m = s1.size(), n = s2.size();vector<vector<int>> dp(m+1, vector<int>(n+1));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(s1[i-1] == s2[j-1])dp[i][j] = dp[i-1][j-1] + s1[i-1];dp[i][j] = max(dp[i][j], max(dp[i][j-1], dp[i-1][j]));}}int sum = 0;for(auto x : s1)sum += x;for(auto x : s2)sum += x;return sum - 2 * dp[m][n];}
};

 


六、最长重复子数组

最长重复子数组

第一步:确定状态表示

dp[i][j]:表示数组 nums1 中以 i 位置元素为结尾的所有的子数组以及数组 nums2 中以 j 位置元素为结尾的所有子数组中,最长公共子数组的长度。

第二步:推出状态转移方程

第三步:初始化dp表

填写顺序:根据状态转移方程。从上往下填写每一行。 最后的返回值是 dp 表里面的最大值。

解题代码:

class Solution 
{
public:int findLength(vector<int>& nums1, vector<int>& nums2) {int m = nums1.size(), n = nums2.size();vector<vector<int>> dp(m+1, vector<int>(n+1));int ret = 0;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(nums1[i-1] == nums2[j-1])dp[i][j] = dp[i-1][j-1] + 1;ret = max(ret, dp[i][j]);}}return ret;}
};


七、交错字符串

交错字符串

预处理:为了下标对应,我们给每个字符串的前面都加上一个空格字符。 

第一步:确定状态表示

dp[i][j]:表示s1[1,i]区间内的字符串和s2[1,j]区间内的字符串能不能拼成s3[1,i+j]区间内的字符串。

第二步:推出状态转移方程

第三步:初始化dp表

解题代码:

class Solution 
{
public:bool isInterleave(string s1, string s2, string s3) {int m = s1.size(),  n = s2.size();if(m+n != s3.size())return false;s1 = " " + s1;s2 = " " + s2;s3 = " " + s3;vector<vector<bool>> dp(m+1, vector<bool>(n+1));dp[0][0] = true;for(int i = 1; i <= n; i++){if(s2[i] == s3[i])dp[0][i] = true;elsebreak;}for(int i = 1; i <= m; i++){if(s1[i] == s3[i])dp[i][0] = true;elsebreak;}for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(s1[i] == s3[i+j] && dp[i-1][j])dp[i][j] = true;else if(s2[j] == s3[i+j] && dp[i][j-1])dp[i][j] = true;}}return dp[m][n];}
};

 

相关文章:

动态规划——两个数组的dp问题

目录 一、最长公共子序列 二、不同的子序列 三、通配符匹配 四、正则表达式匹配 五、两个字符串的最小ASCII删除和 六、最长重复子数组 七、交错字符串 一、最长公共子序列 最长公共子序列 第一步&#xff1a;确定状态表示 dp[i][j]&#xff1a;表示字符串 s1 的 [0&am…...

视频QoE测量学习笔记(二)

目录 自适应比特率&#xff08;ABH或ABS&#xff09; HAS:HTTP adaptive streaming 自适应本质&#xff1a; HAS正在解决传统流协议中主要关注的几个方面&#xff1a; DASH标准化原因 HAS发展 编码&#xff1a; 影响HAS系统的四个主要问题&#xff1a; 一个健全的HAS方…...

RSA算法详解:原理与应用

RSA算法详解&#xff1a;原理与应用 RSA算法是现代密码学的基石之一&#xff0c;广泛应用于安全通信、数据加密和身份验证等领域。本文将详细介绍RSA算法的原理、实现步骤以及实际应用。 一、RSA算法概述 RSA&#xff08;Rivest-Shamir-Adleman&#xff09;算法由Ron Rivest…...

YOLOv6-4.0部分代码阅读笔记-effidehead_fuseab.py

effidehead_fuseab.py yolov6\models\heads\effidehead_fuseab.py 目录 effidehead_fuseab.py 1.所需的库和模块 2.class Detect(nn.Module): 3.def build_effidehead_layer(channels_list, num_anchors, num_classes, reg_max16, num_layers3): 1.所需的库和模块 impo…...

特朗普概念股DJT股票分析:为美国大选“黑天鹅事件”做好准备

猛兽财经核心观点&#xff1a; &#xff08;1&#xff09;特朗普媒体科技集团的股价近期已经从年初至今的高点下跌了35%以上。 &#xff08;2&#xff09;该公司将面临一个重大的黑天鹅事件。 &#xff08;3&#xff09;这一结果将对特朗普媒体科技集团产生重大影响。 随着投资…...

【MySQL】 运维篇—故障排除与性能调优:常见故障的排查与解决

数据库系统在运行过程中可能会遇到各种故障&#xff0c;如性能下降、连接失败、数据损坏等。及时有效地排查和解决这些故障&#xff0c;对于保证系统的稳定性和数据的完整性至关重要。 常见故障及排查方法 1. 数据库连接失败 故障描述&#xff1a;应用程序无法连接到数据库&…...

Android R S T U版本如何在下拉栏菜单增加基本截图功能

本文主要是MTK增加下拉栏开关菜单,功能实现为基本的截图功能,metrics_constants.proto修改 QuickSetting 新增快捷设置图标,以便对应getMetricsCategory获取;一个布局文件,一个配置加载合入实现,一个新增想要实现截图的类。 /frameworks/base/proto/src/metrics_constan…...

C#二叉树原理及二叉搜索树代码实现

一、概念 二叉树&#xff08;Binary Tree&#xff09;是一种树形数据结构&#xff0c;其中每个节点最多有两个子节点&#xff0c;分别称为左子节点和右子节点。二叉树的每个节点包含三个部分&#xff1a;一个值、一个指向左子节点的引用和一个指向右子节点的引用。 二、二叉树…...

.eslintrc.js 的解释

如果您的项目中没有 .eslintrc.js 文件&#xff0c;您可以按以下步骤创建并配置 ESLint&#xff1a; 1. 创建 ESLint 配置文件 在您的项目根目录下创建一个新的文件&#xff0c;命名为 .eslintrc.js。 2. 配置 ESLint 规则 在 .eslintrc.js 文件中添加以下内容&#xff0c;…...

确保企业架构与业务的一致性与合规性:数字化转型中的关键要素与战略实施

在现代企业的数字化转型过程中&#xff0c;确保企业架构&#xff08;Enterprise Architecture, EA&#xff09;与企业业务的紧密一致性与合规性至关重要。无论是在战略层面还是运营层面&#xff0c;EA都为企业的未来发展提供了清晰的蓝图&#xff0c;确保企业在应对复杂的业务环…...

goframe开发一个企业网站 前端界面 拆分界面7

将页面拆出几个公用部分 在resource/template/front创建meta.html header.html footer.html meta.html <head><meta charset"utf-8"><meta content"widthdevice-width, initial-scale1.0" name"viewport"><title>{{.…...

Postman断言与依赖接口测试详解!

在接口测试中&#xff0c;断言是不可或缺的一环。它不仅能够自动判断业务逻辑的正确性&#xff0c;还能确保接口的实际功能实现符合预期。Postman作为一款强大的接口测试工具&#xff0c;不仅支持发送HTTP请求和接收响应&#xff0c;还提供了丰富的断言功能&#xff0c;帮助测试…...

github打不开网络问题

当打开github出现超时或者网络不能访问的情况时&#xff0c;我们进行如下方法解决&#xff1a; 1&#xff0c;ping gitbub.com查看域名分析的DNS IP C:\Users\86156>ping github.com 正在 Ping github.com [20.205.243.166] 具有 32 字节的数据: 来自 20.205.243.166 的回复…...

智能教育工具:基于SpringBoot的在线试题库

1 绪论 1.1 研究背景 现在大家正处于互联网加的时代&#xff0c;这个时代它就是一个信息内容无比丰富&#xff0c;信息处理与管理变得越加高效的网络化的时代&#xff0c;这个时代让大家的生活不仅变得更加地便利化&#xff0c;也让时间变得更加地宝贵化&#xff0c;因为每天的…...

typescript 如何跳过ts类型检查?

文章目录 前言any类型条件判断进行使用断言加注释跳过ts检查 前言 typescript 的使用&#xff0c;虽然让代码更加规范&#xff0c;利于维护&#xff0c;但也给开发带来很多麻烦。为了跳过很多ts的类型检查&#xff0c;大家也是费尽心思&#xff0c;下面就介绍一些常用的方式&a…...

详解ReentrantLock--三种加锁方式

目录 介绍AQS: 直观方式解释加锁的流程&#xff1a; Node是什么&#xff1a;它里面有什么属性呢 图解队列的排队过程&#xff1a; 源码分析三种加锁流程&#xff1a; 我们先讲解一下非公平锁的加锁流程&#xff1a; Lock()方式加锁&#xff1a; 在源码里对于Lock()的解…...

SQL 基础语法(一)

文章目录 1. SQL 分类2. 数据库操作3. 数据表操作4. 增删改操作5. 查询操作6. 用户管理7. 权限控制 1. SQL 分类 2. 数据库操作 #创建数据库 create database if not exists test;#查询所有数据库 show databases;#查询当前数据库 select database();#删除数据库 drop databas…...

Python酷库之旅-第三方库Pandas(190)

目录 一、用法精讲 881、pandas.Index.is_方法 881-1、语法 881-2、参数 881-3、功能 881-4、返回值 881-5、说明 881-6、用法 881-6-1、数据准备 881-6-2、代码示例 881-6-3、结果输出 882、pandas.Index.min方法 882-1、语法 882-2、参数 882-3、功能 882-4、…...

Spring学习笔记_19——@PostConstruct @PreDestroy

PostConstruct && PreDestroy 1. 介绍 PostConstruct注解与PreDestroy注解都是JSR250规范中提供的注解。 PostConstruct注解标注的方法可以在创建Bean后在为属性赋值后&#xff0c;初始化Bean之前执行。 PreDestroy注解标注的方法可以在Bean销毁之前执行。 2. 依赖…...

《云计算网络技术与应用》实训8-1:OpenvSwitch简单配置练习

1.按《云计算网络技术与应用》实训5-1进行环境配置&#xff0c;安装好OVS 2.开启OVS虚拟交换机 3.创建一个网桥br0 4.查看网桥列表 5.把ens34网卡连接到网桥br0上 6. 查看网桥br0所有端口 7.列出网卡ens34连接的所有网桥列表 8.查看OVS网络状态 9.将网桥br0上连接的网卡ens34删…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...