当前位置: 首页 > news >正文

【51 Pandas+Pyecharts | 深圳市共享单车数据分析可视化】

文章目录

  • 🏳️‍🌈 1. 导入模块
  • 🏳️‍🌈 2. Pandas数据处理
    • 2.1 读取数据
    • 2.2 查看数据信息
    • 2.3 处理起始时间、结束时间
    • 2.4 增加骑行时长区间列
    • 2.5 增加骑行里程区间列
  • 🏳️‍🌈 3. Pyecharts数据可视化
    • 3.1 各行政区单车骑行量
    • 3.2 各行政区单车里程热图
    • 3.3 起始时间分布
    • 3.4 结束时间分布
    • 3.5 骑行里程分布
    • 3.6 骑行里程区间占比
    • 3.7 骑行时长(s)
    • 3.8 骑行时长区间占比
  • 🏳️‍🌈 4. 可视化项目源码+数据

大家好,我是 👉【Python当打之年(点击跳转)】

本期将利用Python分析「深圳市共享单车数据」 ,看看:各行政区单车骑行量、骑行里程、骑行时间分布等情况,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas — 数据处理
  • Pyecharts — 数据可视化

🏳️‍🌈 1. 导入模块

import pandas as pd
from pyecharts.charts import *
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

df1 = pd.read_excel('./共享单车数据.xlsx')

在这里插入图片描述

2.2 查看数据信息

df.info()

在这里插入图片描述

2.3 处理起始时间、结束时间

df1['骑行时长(s)'] = (df1['结束时间'] - df1['起始时间']).dt.total_seconds()

2.4 增加骑行时长区间列

lables = [f'{i}-{i+5}分钟' for i in range(0, 60, 5)]+['60分钟以上']
df1['骑行时长区间'] = pd.cut(df1['骑行时长(s)'],bins=[i for i in range(0, 3601, 300)]+[10000],labels=lables)

2.5 增加骑行里程区间列

distance_transfer=df1['骑行里程(m)'].map(lambda x: x / 1000)
df1['骑行里程区间'] = pd.cut(distance_transfer,bins=[0,1,2,3,4,5,10],labels=['0-1公里','1-2公里','2-3公里','3-4公里','4-5公里','5-6公里'])

在这里插入图片描述

🏳️‍🌈 3. Pyecharts数据可视化

3.1 各行政区单车骑行量

def get_bar():bar = (Bar().add_xaxis(x_data).add_yaxis('', y_data,).set_global_opts(title_opts=opts.TitleOpts(title='1-各行政区单车骑行量',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=range_color,),))return bar

在这里插入图片描述

  • 福田区、龙华区、南山区的骑行订单量要远高于其他行政区
  • 光明区、盐田区骑行订单量最少

3.2 各行政区单车里程热图

def get_map():map1 = (Map().add('单车里程', data, '深圳').set_global_opts(title_opts=opts.TitleOpts(title='2-各行政区单车里程热图',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(range_color=range_color,),))return map1

在这里插入图片描述

3.3 起始时间分布

在这里插入图片描述

  • 骑行订单量在早8时和晚16时达到峰值,这两个时间正好是早晚高峰时间
    大部分的骑行订单集中在16时-20时

3.4 结束时间分布

在这里插入图片描述

3.5 骑行里程分布

def get_scatter():scatter = (Scatter().add_xaxis(x_data).add_yaxis('',y_data,label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title='5-骑行里程分布',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=range_color,)))return scatter

在这里插入图片描述

3.6 骑行里程区间占比

在这里插入图片描述

  • 3公里以内的骑行订单占比达到80%,其中1-2公里区间最多,占比约34%

3.7 骑行时长(s)

在这里插入图片描述

3.8 骑行时长区间占比

def get_pie():pie = (Pie().add('',[list(z) for z in zip(x_data, y_data)]).set_global_opts(title_opts=opts.TitleOpts(title='8-骑行时长区间占比',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=range_color,),))return pie

在这里插入图片描述

  • 15分钟以内的骑行订单占比达到78%,其中5-10分钟这个区间最多,占比约34%

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

相关文章:

【51 Pandas+Pyecharts | 深圳市共享单车数据分析可视化】

文章目录 🏳️‍🌈 1. 导入模块🏳️‍🌈 2. Pandas数据处理2.1 读取数据2.2 查看数据信息2.3 处理起始时间、结束时间2.4 增加骑行时长区间列2.5 增加骑行里程区间列 🏳️‍🌈 3. Pyecharts数据可视化3.1 各…...

【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器

👉博主介绍: 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO 专家博主 ⛪️ 个人社区&#x…...

线程相关题(线程池、线程使用、核心线程数的设置)

目录 线程安全的什么情况用?情况下用线程安全的类? 线程池线程方面的优化 线程池调优主要涉及以下几个关键参数。 线程不安全原因? 1. 共享资源访问冲突 2. 缺乏原子操作 3. 内存可见性问题 4. 重排序问题 如何解决线程不安全的问题&#xff1…...

2181、合并零之间的节点

2181、[中等] 合并零之间的节点 1、问题描述: 给你一个链表的头节点 head ,该链表包含由 0 分隔开的一连串整数。链表的 开端 和 末尾 的节点都满足 Node.val 0 。 对于每两个相邻的 0 ,请你将它们之间的所有节点合并成一个节点&#xff…...

powerlaw:用于分析幂律分布的Python库

引言 幂律分布在游戏行业中非常重要。在免费游戏模式下,玩家的付费行为往往遵循幂律分布。少数“鲸鱼玩家”贡献了大部分的收入,而大多数玩家可能只进行少量或不进行付费。通过理解和应用幂律分布,游戏开发者可以更好地分析和预测玩家行为&a…...

工作管理实战指南:利用Jira、Confluence等Atlassian工具打破信息孤岛,增强团队协作【含免费指南】

如果工作场所存在超级反派,其中之一可能会被命名为“信息孤岛”,因为它们能够对公司的生产力和协作造成严重破坏。当公司决定使用太多互不关联的工具来完成工作时,“信息孤岛”就会出现,导致团队需要耗费大量时间才能就某件事情达…...

JAVA语言多态和动态语言实现原理

JAVA语言多态和动态语言实现原理 前言invoke指令invokestaticinvokespecialinvokevirtualinvokeintefaceinvokedynamicLambda 总结 前言 我们编码java文件,javac编译class文件,java运行class,JVM执行main方法,加载链接初始化对应…...

阿里云-防火墙设置不当导致ssh无法连接

今天学网络编程的时候,看见有陌生ip连接,所以打开了防火墙禁止除本机之外的其他ip连接: 但是当我再次用ssh的时候,连不上了才发现大事不妙。 折腾了半天,发现阿里云上可以在线向服务器发送命令,所以赶紧把2…...

使用WebAssembly优化Web应用性能

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 使用WebAssembly优化Web应用性能 引言 WebAssembly 简介 安装工具 创建 WebAssembly 项目 编写 WebAssembly 代码 编译 WebAssem…...

软件测试模型

软件测试模型是在软件开发过程中,用于指导软件测试活动的一系列方法和框架。这些模型帮助测试团队确定何时进行测试、测试什么以及如何测试,从而确保软件的质量和稳定性。 一 V模型 V模型是一种经典的软件测试模型,它由瀑布研发模型演变而来的测试模型…...

动态规划——两个数组的dp问题

目录 一、最长公共子序列 二、不同的子序列 三、通配符匹配 四、正则表达式匹配 五、两个字符串的最小ASCII删除和 六、最长重复子数组 七、交错字符串 一、最长公共子序列 最长公共子序列 第一步:确定状态表示 dp[i][j]:表示字符串 s1 的 [0&am…...

视频QoE测量学习笔记(二)

目录 自适应比特率(ABH或ABS) HAS:HTTP adaptive streaming 自适应本质: HAS正在解决传统流协议中主要关注的几个方面: DASH标准化原因 HAS发展 编码: 影响HAS系统的四个主要问题: 一个健全的HAS方…...

RSA算法详解:原理与应用

RSA算法详解:原理与应用 RSA算法是现代密码学的基石之一,广泛应用于安全通信、数据加密和身份验证等领域。本文将详细介绍RSA算法的原理、实现步骤以及实际应用。 一、RSA算法概述 RSA(Rivest-Shamir-Adleman)算法由Ron Rivest…...

YOLOv6-4.0部分代码阅读笔记-effidehead_fuseab.py

effidehead_fuseab.py yolov6\models\heads\effidehead_fuseab.py 目录 effidehead_fuseab.py 1.所需的库和模块 2.class Detect(nn.Module): 3.def build_effidehead_layer(channels_list, num_anchors, num_classes, reg_max16, num_layers3): 1.所需的库和模块 impo…...

特朗普概念股DJT股票分析:为美国大选“黑天鹅事件”做好准备

猛兽财经核心观点: (1)特朗普媒体科技集团的股价近期已经从年初至今的高点下跌了35%以上。 (2)该公司将面临一个重大的黑天鹅事件。 (3)这一结果将对特朗普媒体科技集团产生重大影响。 随着投资…...

【MySQL】 运维篇—故障排除与性能调优:常见故障的排查与解决

数据库系统在运行过程中可能会遇到各种故障,如性能下降、连接失败、数据损坏等。及时有效地排查和解决这些故障,对于保证系统的稳定性和数据的完整性至关重要。 常见故障及排查方法 1. 数据库连接失败 故障描述:应用程序无法连接到数据库&…...

Android R S T U版本如何在下拉栏菜单增加基本截图功能

本文主要是MTK增加下拉栏开关菜单,功能实现为基本的截图功能,metrics_constants.proto修改 QuickSetting 新增快捷设置图标,以便对应getMetricsCategory获取;一个布局文件,一个配置加载合入实现,一个新增想要实现截图的类。 /frameworks/base/proto/src/metrics_constan…...

C#二叉树原理及二叉搜索树代码实现

一、概念 二叉树(Binary Tree)是一种树形数据结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。二叉树的每个节点包含三个部分:一个值、一个指向左子节点的引用和一个指向右子节点的引用。 二、二叉树…...

.eslintrc.js 的解释

如果您的项目中没有 .eslintrc.js 文件,您可以按以下步骤创建并配置 ESLint: 1. 创建 ESLint 配置文件 在您的项目根目录下创建一个新的文件,命名为 .eslintrc.js。 2. 配置 ESLint 规则 在 .eslintrc.js 文件中添加以下内容,…...

确保企业架构与业务的一致性与合规性:数字化转型中的关键要素与战略实施

在现代企业的数字化转型过程中,确保企业架构(Enterprise Architecture, EA)与企业业务的紧密一致性与合规性至关重要。无论是在战略层面还是运营层面,EA都为企业的未来发展提供了清晰的蓝图,确保企业在应对复杂的业务环…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

基础测试工具使用经验

背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...