当前位置: 首页 > news >正文

【51 Pandas+Pyecharts | 深圳市共享单车数据分析可视化】

文章目录

  • 🏳️‍🌈 1. 导入模块
  • 🏳️‍🌈 2. Pandas数据处理
    • 2.1 读取数据
    • 2.2 查看数据信息
    • 2.3 处理起始时间、结束时间
    • 2.4 增加骑行时长区间列
    • 2.5 增加骑行里程区间列
  • 🏳️‍🌈 3. Pyecharts数据可视化
    • 3.1 各行政区单车骑行量
    • 3.2 各行政区单车里程热图
    • 3.3 起始时间分布
    • 3.4 结束时间分布
    • 3.5 骑行里程分布
    • 3.6 骑行里程区间占比
    • 3.7 骑行时长(s)
    • 3.8 骑行时长区间占比
  • 🏳️‍🌈 4. 可视化项目源码+数据

大家好,我是 👉【Python当打之年(点击跳转)】

本期将利用Python分析「深圳市共享单车数据」 ,看看:各行政区单车骑行量、骑行里程、骑行时间分布等情况,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas — 数据处理
  • Pyecharts — 数据可视化

🏳️‍🌈 1. 导入模块

import pandas as pd
from pyecharts.charts import *
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

df1 = pd.read_excel('./共享单车数据.xlsx')

在这里插入图片描述

2.2 查看数据信息

df.info()

在这里插入图片描述

2.3 处理起始时间、结束时间

df1['骑行时长(s)'] = (df1['结束时间'] - df1['起始时间']).dt.total_seconds()

2.4 增加骑行时长区间列

lables = [f'{i}-{i+5}分钟' for i in range(0, 60, 5)]+['60分钟以上']
df1['骑行时长区间'] = pd.cut(df1['骑行时长(s)'],bins=[i for i in range(0, 3601, 300)]+[10000],labels=lables)

2.5 增加骑行里程区间列

distance_transfer=df1['骑行里程(m)'].map(lambda x: x / 1000)
df1['骑行里程区间'] = pd.cut(distance_transfer,bins=[0,1,2,3,4,5,10],labels=['0-1公里','1-2公里','2-3公里','3-4公里','4-5公里','5-6公里'])

在这里插入图片描述

🏳️‍🌈 3. Pyecharts数据可视化

3.1 各行政区单车骑行量

def get_bar():bar = (Bar().add_xaxis(x_data).add_yaxis('', y_data,).set_global_opts(title_opts=opts.TitleOpts(title='1-各行政区单车骑行量',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=range_color,),))return bar

在这里插入图片描述

  • 福田区、龙华区、南山区的骑行订单量要远高于其他行政区
  • 光明区、盐田区骑行订单量最少

3.2 各行政区单车里程热图

def get_map():map1 = (Map().add('单车里程', data, '深圳').set_global_opts(title_opts=opts.TitleOpts(title='2-各行政区单车里程热图',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(range_color=range_color,),))return map1

在这里插入图片描述

3.3 起始时间分布

在这里插入图片描述

  • 骑行订单量在早8时和晚16时达到峰值,这两个时间正好是早晚高峰时间
    大部分的骑行订单集中在16时-20时

3.4 结束时间分布

在这里插入图片描述

3.5 骑行里程分布

def get_scatter():scatter = (Scatter().add_xaxis(x_data).add_yaxis('',y_data,label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title='5-骑行里程分布',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=range_color,)))return scatter

在这里插入图片描述

3.6 骑行里程区间占比

在这里插入图片描述

  • 3公里以内的骑行订单占比达到80%,其中1-2公里区间最多,占比约34%

3.7 骑行时长(s)

在这里插入图片描述

3.8 骑行时长区间占比

def get_pie():pie = (Pie().add('',[list(z) for z in zip(x_data, y_data)]).set_global_opts(title_opts=opts.TitleOpts(title='8-骑行时长区间占比',subtitle=subtitle,pos_top='2%',pos_left='center',),visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=range_color,),))return pie

在这里插入图片描述

  • 15分钟以内的骑行订单占比达到78%,其中5-10分钟这个区间最多,占比约34%

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

相关文章:

【51 Pandas+Pyecharts | 深圳市共享单车数据分析可视化】

文章目录 🏳️‍🌈 1. 导入模块🏳️‍🌈 2. Pandas数据处理2.1 读取数据2.2 查看数据信息2.3 处理起始时间、结束时间2.4 增加骑行时长区间列2.5 增加骑行里程区间列 🏳️‍🌈 3. Pyecharts数据可视化3.1 各…...

【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器

👉博主介绍: 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO 专家博主 ⛪️ 个人社区&#x…...

线程相关题(线程池、线程使用、核心线程数的设置)

目录 线程安全的什么情况用?情况下用线程安全的类? 线程池线程方面的优化 线程池调优主要涉及以下几个关键参数。 线程不安全原因? 1. 共享资源访问冲突 2. 缺乏原子操作 3. 内存可见性问题 4. 重排序问题 如何解决线程不安全的问题&#xff1…...

2181、合并零之间的节点

2181、[中等] 合并零之间的节点 1、问题描述: 给你一个链表的头节点 head ,该链表包含由 0 分隔开的一连串整数。链表的 开端 和 末尾 的节点都满足 Node.val 0 。 对于每两个相邻的 0 ,请你将它们之间的所有节点合并成一个节点&#xff…...

powerlaw:用于分析幂律分布的Python库

引言 幂律分布在游戏行业中非常重要。在免费游戏模式下,玩家的付费行为往往遵循幂律分布。少数“鲸鱼玩家”贡献了大部分的收入,而大多数玩家可能只进行少量或不进行付费。通过理解和应用幂律分布,游戏开发者可以更好地分析和预测玩家行为&a…...

工作管理实战指南:利用Jira、Confluence等Atlassian工具打破信息孤岛,增强团队协作【含免费指南】

如果工作场所存在超级反派,其中之一可能会被命名为“信息孤岛”,因为它们能够对公司的生产力和协作造成严重破坏。当公司决定使用太多互不关联的工具来完成工作时,“信息孤岛”就会出现,导致团队需要耗费大量时间才能就某件事情达…...

JAVA语言多态和动态语言实现原理

JAVA语言多态和动态语言实现原理 前言invoke指令invokestaticinvokespecialinvokevirtualinvokeintefaceinvokedynamicLambda 总结 前言 我们编码java文件,javac编译class文件,java运行class,JVM执行main方法,加载链接初始化对应…...

阿里云-防火墙设置不当导致ssh无法连接

今天学网络编程的时候,看见有陌生ip连接,所以打开了防火墙禁止除本机之外的其他ip连接: 但是当我再次用ssh的时候,连不上了才发现大事不妙。 折腾了半天,发现阿里云上可以在线向服务器发送命令,所以赶紧把2…...

使用WebAssembly优化Web应用性能

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 使用WebAssembly优化Web应用性能 引言 WebAssembly 简介 安装工具 创建 WebAssembly 项目 编写 WebAssembly 代码 编译 WebAssem…...

软件测试模型

软件测试模型是在软件开发过程中,用于指导软件测试活动的一系列方法和框架。这些模型帮助测试团队确定何时进行测试、测试什么以及如何测试,从而确保软件的质量和稳定性。 一 V模型 V模型是一种经典的软件测试模型,它由瀑布研发模型演变而来的测试模型…...

动态规划——两个数组的dp问题

目录 一、最长公共子序列 二、不同的子序列 三、通配符匹配 四、正则表达式匹配 五、两个字符串的最小ASCII删除和 六、最长重复子数组 七、交错字符串 一、最长公共子序列 最长公共子序列 第一步:确定状态表示 dp[i][j]:表示字符串 s1 的 [0&am…...

视频QoE测量学习笔记(二)

目录 自适应比特率(ABH或ABS) HAS:HTTP adaptive streaming 自适应本质: HAS正在解决传统流协议中主要关注的几个方面: DASH标准化原因 HAS发展 编码: 影响HAS系统的四个主要问题: 一个健全的HAS方…...

RSA算法详解:原理与应用

RSA算法详解:原理与应用 RSA算法是现代密码学的基石之一,广泛应用于安全通信、数据加密和身份验证等领域。本文将详细介绍RSA算法的原理、实现步骤以及实际应用。 一、RSA算法概述 RSA(Rivest-Shamir-Adleman)算法由Ron Rivest…...

YOLOv6-4.0部分代码阅读笔记-effidehead_fuseab.py

effidehead_fuseab.py yolov6\models\heads\effidehead_fuseab.py 目录 effidehead_fuseab.py 1.所需的库和模块 2.class Detect(nn.Module): 3.def build_effidehead_layer(channels_list, num_anchors, num_classes, reg_max16, num_layers3): 1.所需的库和模块 impo…...

特朗普概念股DJT股票分析:为美国大选“黑天鹅事件”做好准备

猛兽财经核心观点: (1)特朗普媒体科技集团的股价近期已经从年初至今的高点下跌了35%以上。 (2)该公司将面临一个重大的黑天鹅事件。 (3)这一结果将对特朗普媒体科技集团产生重大影响。 随着投资…...

【MySQL】 运维篇—故障排除与性能调优:常见故障的排查与解决

数据库系统在运行过程中可能会遇到各种故障,如性能下降、连接失败、数据损坏等。及时有效地排查和解决这些故障,对于保证系统的稳定性和数据的完整性至关重要。 常见故障及排查方法 1. 数据库连接失败 故障描述:应用程序无法连接到数据库&…...

Android R S T U版本如何在下拉栏菜单增加基本截图功能

本文主要是MTK增加下拉栏开关菜单,功能实现为基本的截图功能,metrics_constants.proto修改 QuickSetting 新增快捷设置图标,以便对应getMetricsCategory获取;一个布局文件,一个配置加载合入实现,一个新增想要实现截图的类。 /frameworks/base/proto/src/metrics_constan…...

C#二叉树原理及二叉搜索树代码实现

一、概念 二叉树(Binary Tree)是一种树形数据结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。二叉树的每个节点包含三个部分:一个值、一个指向左子节点的引用和一个指向右子节点的引用。 二、二叉树…...

.eslintrc.js 的解释

如果您的项目中没有 .eslintrc.js 文件,您可以按以下步骤创建并配置 ESLint: 1. 创建 ESLint 配置文件 在您的项目根目录下创建一个新的文件,命名为 .eslintrc.js。 2. 配置 ESLint 规则 在 .eslintrc.js 文件中添加以下内容,…...

确保企业架构与业务的一致性与合规性:数字化转型中的关键要素与战略实施

在现代企业的数字化转型过程中,确保企业架构(Enterprise Architecture, EA)与企业业务的紧密一致性与合规性至关重要。无论是在战略层面还是运营层面,EA都为企业的未来发展提供了清晰的蓝图,确保企业在应对复杂的业务环…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

如何为服务器生成TLS证书

TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...