当前位置: 首页 > news >正文

【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】

在这里插入图片描述

在 Kubernetes 中,Service 是一种抽象,用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多,而其他 Pod
的流量较少时,可能会导致负载不均衡。这种情况不仅影响性能,还可能导致某些 Pod
过载,影响应用的可用性。本文将详细分析此问题的原因及其解决方案。

一、问题描述

在 Kubernetes 中,Service 通常使用轮询或 IP 哈希算法来分配流量到后端 Pod。然而,某些情况下,流量分配可能不均匀,导致:

  • 部分 Pod 负载过高,可能出现性能瓶颈。
  • 其他 Pod 处于空闲状态,资源未得到充分利用。

二、故障排查步骤

1. 检查 Service 的类型

首先,确认 Service 的类型。不同类型的 Service 处理流量的方式可能不同。

命令
kubectl get svc <service-name>
输出示例
NAME          TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
my-service    ClusterIP   10.96.0.1      <none>        80/TCP     10m

2. 检查 Pod 的状态和健康

确认所有 Pod 是否正常运行,并且处于 Ready 状态。

命令
kubectl get pods -l app=<app-label>
输出示例
NAME            READY   STATUS    RESTARTS   AGE
my-app-1       1/1     Running   0          5m
my-app-2       1/1     Running   0          5m
my-app-3       1/1     Running   0          5m

3. 检查 Pod 的资源使用情况

查看各个 Pod 的 CPU 和内存使用情况,以识别负载不均的情况。

命令
kubectl top pods -l app=<app-label>
输出示例
NAME            CPU(cores)   MEMORY(bytes)
my-app-1       100m         200Mi
my-app-2       250m         300Mi
my-app-3       50m          100Mi

4. 检查 Service 的 Endpoints

查看 Service 的 Endpoints,确认是否正确指向后端 Pod。

命令
kubectl get endpoints <service-name>
输出示例
NAME          ENDPOINTS                   AGE
my-service    10.244.1.2:8080,10.244.1.3:8080   10m

5. 检查流量分配

使用工具(如 kubectl port-forward)或在应用中添加日志,查看实际请求是如何分配到 Pod 的。

三、常见原因及解决方案

1. Pod 的资源配置不均

问题描述:如果某些 Pod 的资源请求和限制配置不合理,可能导致调度不均。

解决方案

  • 确保所有 Pod 的资源请求和限制合理设置:
resources:requests:cpu: "100m"memory: "256Mi"limits:cpu: "200m"memory: "512Mi"

2. 负载均衡器问题

问题描述:外部负载均衡器可能未均衡地分配流量。

解决方案

  • 检查负载均衡器的配置,确保其算法设置正确。
  • 如果使用 NodePort 或 LoadBalancer 类型的 Service,确认其与集群内部流量分配的一致性。

3. 应用逻辑不均衡

问题描述:有些应用可能在处理请求时存在逻辑不均衡,导致部分 Pod 处理的请求更多。

解决方案

  • 检查应用代码,确保请求处理逻辑没有偏向特定的 Pod。
  • 考虑使用请求路由或 A/B 测试策略来均衡流量。

4. 使用 Session Affinity

问题描述:如果启用了 Session Affinity,可能会导致某些 Pod 接收更多流量。

解决方案

  • 如果不需要 Session Affinity,可以通过设置 Service 的 sessionAffinityNone 来禁用此功能:
spec:sessionAffinity: None

5. Pod 的健康检查不正确

问题描述:Pod 的健康检查配置不当,可能导致某些 Pod 被认为不健康,从而不接收流量。

解决方案

  • 检查并调整健康检查(liveness 和 readiness probes)的配置,确保健康检查准确反映 Pod 的实际状态:
livenessProbe:httpGet:path: /healthzport: 8080initialDelaySeconds: 30periodSeconds: 10

6. 使用 Horizontal Pod Autoscaler

问题描述:流量波动导致负载不均,Cluster Autoscaler 未能及时扩展 Pod。

解决方案

  • 考虑使用 Horizontal Pod Autoscaler (HPA) 根据 CPU 使用量或其他指标自动扩展 Pod 数量:
kubectl autoscale deployment my-app --cpu-percent=50 --min=1 --max=10

四、总结

在 Kubernetes 中,Service 的流量不均匀问题可能由多种因素引起,包括 Pod 的资源配置、外部负载均衡器设置、应用逻辑、健康检查配置等。通过逐步排查 Service 状态、Pod 状态、资源使用情况和流量分配情况,可以有效定位问题并采取相应的解决方案。确保合理的资源配置、健康检查和负载均衡策略,是实现流量均衡的关键。

相关文章:

【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】

在 Kubernetes 中&#xff0c;Service 是一种抽象&#xff0c;用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多&#xff0c;而其他 Pod 的流量较少时&#xff0c;可能会导致负载不均衡。这种情况不仅影响性能&#xff0c;还可能导致某些 Pod 过载&#xff0c;影响应用…...

C-小H学生物

题意&#xff1a;一棵树节点编号为1具有n种不同物种的演化树上。物种i将遗传信息向下传递到物种j会产生dij的遍历。dij是一个长为l的01串。变异程度duv为u到v简单路径上的所有编译信息的异或和。基因多样性定义为 分析&#xff1a;计算Di的遗传信息&#xff0c;用dfs将遗传信息…...

什么是软件设计模式, 它们⽤于解决什么问题, 它们为什么有效

什么是设计模式 软件设计模式是指在软件设计过程中&#xff0c;经过验证的、可复⽤的、对特定 场景下常⻅问题的解决⽅案的⼀种描述或模板。这些模式并不是具体的 代码&#xff0c;⽽是⽤于指导如何组织代码、类和对象&#xff0c;以便更好地解决问题和 满⾜需求。 ⽤于解决的…...

LeetCode 3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划)

【LetMeFly】3165.不包含相邻元素的子序列的最大和&#xff1a;单点修改的线段树&#xff08;动态规划&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/maximum-sum-of-subsequence-with-non-adjacent-elements/ 给你一个整数数组 nums 和一个二维数组 q…...

ios 快捷指令扩展(Intents Extension)简单使用 swift语言

本文介绍使用Xcode15 建立快捷指令的Extension&#xff0c;并描述如何修改快捷指令的IntentHandler&#xff0c;带参数跳转主应用&#xff1b;以及展示多个选项的快捷指令弹框(配置intentdefinition文件)&#xff0c;点击选项带参数跳到主应用的方法 创建快捷指令 快捷指令是…...

虚拟化环境中的精简版 Android 操作系统 Microdroid

随着移动设备的普及和应用场景的多样化&#xff0c;安全性和隐私保护成为了移动操作系统的重要课题。Google推出的Microdroid&#xff0c;是一个专为虚拟化环境设计的精简版Android操作系统&#xff0c;旨在提供一个安全、隔离的执行环境。本文将详细介绍Microdroid的架构、功能…...

NFTScan Site:以蓝标认证与高级项目管理功能赋能 NFT 项目

自 NFTScan Site 上线以来&#xff0c;它迅速成为 NFT 市场中的一支重要力量&#xff0c;凭借对各类 NFT 集合、市场以及 NFTfi 项目的认证获得了广泛认可。这个平台帮助许多项目提升了曝光度和可见性&#xff0c;为它们在竞争激烈的 NFT 市场中创造了更大的成功机会。 在最新更…...

Vue:模板 MVVM

Vue&#xff1a;模板 & MVVM 模板插值语法指令语法 MVVMdefineProperty数据代理 模板 Vue实例绑定一个容器&#xff0c;想要向容器中填入动态的值&#xff0c;就需要使用模板语法。模板语法分为插值语法和指令语法。 插值语法 插值语法很简单&#xff0c;使用{{}}包含一…...

Kafka 消息丢失如何处理?

今天给大家分享一个在面试中经常遇到的问题&#xff1a;Kafka 消息丢失该如何处理&#xff1f; 这个问题啊&#xff0c;看似简单&#xff0c;其实里面藏着很多“套路”。 来&#xff0c;咱们先讲一个面试的“真实”案例。 面试官问&#xff1a;“Kafka 消息丢失如何处理&#x…...

Mysql报错注入之floor报错详解

updatexml extractvalue floor 是mysql的函数 groupbyrandfloorcount 一、简述 利用 select count(),(floor(rand(0)2))x from table group by x&#xff0c;导致数据库报错&#xff0c;通过 concat 函数&#xff0c;连接注入语句与 floor(rand(0)*2)函数&#xff0c;实现将…...

EPS原理笔记

EPS UE(user equipment)&#xff0c;移动用户设备 LTE(Long Term Evolution)&#xff0c;无线接入网部分&#xff0c;E-UTRAN EPC(system Architecture Evolution、Evoloed Packet Core)&#xff0c;核心网部分&#xff0c;主要包括MME、S-GW、P-GW、HSS&#xff0c;连接Intern…...

LeetCode 876. 链表的中间结点

题目描述: 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回第二个中间结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[3,4,5] 解释&#xff1a;链表只有一个中间结点&#xff0…...

划界与分类的艺术:支持向量机(SVM)的深度解析

划界与分类的艺术&#xff1a;支持向量机&#xff08;SVM&#xff09;的深度解析 1. 引言 支持向量机&#xff08;Support Vector Machine, SVM&#xff09;是机器学习中的经典算法&#xff0c;以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分…...

题目:100条经典C语言笔试题目(1-5)

题目&#xff1a; 1、请填写 bool , float, 指针变量 与“零值”比较的if 语句。 提示&#xff1a;这里“零值”可以是 0, 0.0 , FALSE 或者“空指针” 。例如 int 变量 n 与“零值”比较的 if 语句为&#xff1a; &#xff08;1&#xff09;请写出bool flag 与“零值”比较…...

python代码编写规范及注意事项

目录 1. 注意1.1 变量与常量解释&#xff1a;建议的修复&#xff1a; 1.2 Too many arguments 和 Too many local variables解决方案1. 减少参数数量2. 减少局部变量数量3. 调整 Pylint 配置 总结 1. 注意 1.1 变量与常量 解读下面的pylint问题 C0103: Constant name “file_p…...

【Linux】命令行参数 | 环境变量

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 主厨&#xff1a;邪王真眼 主厨的主页&#xff1a;Chef‘s blog 所属专栏&#xff1a;青果大战linux 总有光环在陨落&#xff0c;总有新星在闪烁 前几天在搞硬件&…...

python 使用进程池并发执行 SQL 语句

这段代码使用了 Python 的 multiprocessing 模块来实现真正的并行处理&#xff0c;绕过 Python 的全局解释器锁&#xff08;GIL&#xff09;限制&#xff0c;从而在多核 CPU 上并发执行多个 SQL 语句。 from pyhive import hive import multiprocessing# 建立连接 conn hive.…...

我也谈AI

“随着人工智能技术的不断发展&#xff0c;我们已经看到了它在各行业带来的巨大变革。在医疗行业中&#xff0c;人工智能技术正在被应用于病例诊断、药物研发等方面&#xff0c;为医学研究和临床治疗提供了新的思路和方法&#xff1b;在企业中&#xff0c;人工智能技术可以通过…...

算法妙妙屋-------1.递归的深邃回响:二叉树的奇妙剪枝

大佬们好呀&#xff0c;这一次讲解的是二叉树的深度搜索&#xff0c;大佬们请阅 1.前言 ⼆叉树中的深搜&#xff08;介绍&#xff09; 深度优先遍历&#xff08;DFS&#xff0c;全称为DepthFirstTraversal&#xff09;&#xff0c;是我们树或者图这样的数据结构中常⽤的⼀种…...

编写第一个 Appium 测试脚本:从安装到运行!

前言 最近接到一个测试项目&#xff0c;简单描述一下&#xff0c;需求就是&#xff1a;一端发送指令&#xff0c;另一端接受指令并处理指令。大概看了看有上百条指令&#xff0c;点点点岂不是废了&#xff0c;而且后期迭代&#xff0c;每次都需要点点点&#xff0c;想想就头大…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...