【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】

在 Kubernetes 中,Service 是一种抽象,用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多,而其他 Pod
的流量较少时,可能会导致负载不均衡。这种情况不仅影响性能,还可能导致某些 Pod
过载,影响应用的可用性。本文将详细分析此问题的原因及其解决方案。
一、问题描述
在 Kubernetes 中,Service 通常使用轮询或 IP 哈希算法来分配流量到后端 Pod。然而,某些情况下,流量分配可能不均匀,导致:
- 部分 Pod 负载过高,可能出现性能瓶颈。
- 其他 Pod 处于空闲状态,资源未得到充分利用。
二、故障排查步骤
1. 检查 Service 的类型
首先,确认 Service 的类型。不同类型的 Service 处理流量的方式可能不同。
命令
kubectl get svc <service-name>
输出示例
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-service ClusterIP 10.96.0.1 <none> 80/TCP 10m
2. 检查 Pod 的状态和健康
确认所有 Pod 是否正常运行,并且处于 Ready 状态。
命令
kubectl get pods -l app=<app-label>
输出示例
NAME READY STATUS RESTARTS AGE
my-app-1 1/1 Running 0 5m
my-app-2 1/1 Running 0 5m
my-app-3 1/1 Running 0 5m
3. 检查 Pod 的资源使用情况
查看各个 Pod 的 CPU 和内存使用情况,以识别负载不均的情况。
命令
kubectl top pods -l app=<app-label>
输出示例
NAME CPU(cores) MEMORY(bytes)
my-app-1 100m 200Mi
my-app-2 250m 300Mi
my-app-3 50m 100Mi
4. 检查 Service 的 Endpoints
查看 Service 的 Endpoints,确认是否正确指向后端 Pod。
命令
kubectl get endpoints <service-name>
输出示例
NAME ENDPOINTS AGE
my-service 10.244.1.2:8080,10.244.1.3:8080 10m
5. 检查流量分配
使用工具(如 kubectl port-forward)或在应用中添加日志,查看实际请求是如何分配到 Pod 的。
三、常见原因及解决方案
1. Pod 的资源配置不均
问题描述:如果某些 Pod 的资源请求和限制配置不合理,可能导致调度不均。
解决方案:
- 确保所有 Pod 的资源请求和限制合理设置:
resources:requests:cpu: "100m"memory: "256Mi"limits:cpu: "200m"memory: "512Mi"
2. 负载均衡器问题
问题描述:外部负载均衡器可能未均衡地分配流量。
解决方案:
- 检查负载均衡器的配置,确保其算法设置正确。
- 如果使用 NodePort 或 LoadBalancer 类型的 Service,确认其与集群内部流量分配的一致性。
3. 应用逻辑不均衡
问题描述:有些应用可能在处理请求时存在逻辑不均衡,导致部分 Pod 处理的请求更多。
解决方案:
- 检查应用代码,确保请求处理逻辑没有偏向特定的 Pod。
- 考虑使用请求路由或 A/B 测试策略来均衡流量。
4. 使用 Session Affinity
问题描述:如果启用了 Session Affinity,可能会导致某些 Pod 接收更多流量。
解决方案:
- 如果不需要 Session Affinity,可以通过设置 Service 的
sessionAffinity为None来禁用此功能:
spec:sessionAffinity: None
5. Pod 的健康检查不正确
问题描述:Pod 的健康检查配置不当,可能导致某些 Pod 被认为不健康,从而不接收流量。
解决方案:
- 检查并调整健康检查(liveness 和 readiness probes)的配置,确保健康检查准确反映 Pod 的实际状态:
livenessProbe:httpGet:path: /healthzport: 8080initialDelaySeconds: 30periodSeconds: 10
6. 使用 Horizontal Pod Autoscaler
问题描述:流量波动导致负载不均,Cluster Autoscaler 未能及时扩展 Pod。
解决方案:
- 考虑使用 Horizontal Pod Autoscaler (HPA) 根据 CPU 使用量或其他指标自动扩展 Pod 数量:
kubectl autoscale deployment my-app --cpu-percent=50 --min=1 --max=10
四、总结
在 Kubernetes 中,Service 的流量不均匀问题可能由多种因素引起,包括 Pod 的资源配置、外部负载均衡器设置、应用逻辑、健康检查配置等。通过逐步排查 Service 状态、Pod 状态、资源使用情况和流量分配情况,可以有效定位问题并采取相应的解决方案。确保合理的资源配置、健康检查和负载均衡策略,是实现流量均衡的关键。
相关文章:
【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】
在 Kubernetes 中,Service 是一种抽象,用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多,而其他 Pod 的流量较少时,可能会导致负载不均衡。这种情况不仅影响性能,还可能导致某些 Pod 过载,影响应用…...
C-小H学生物
题意:一棵树节点编号为1具有n种不同物种的演化树上。物种i将遗传信息向下传递到物种j会产生dij的遍历。dij是一个长为l的01串。变异程度duv为u到v简单路径上的所有编译信息的异或和。基因多样性定义为 分析:计算Di的遗传信息,用dfs将遗传信息…...
什么是软件设计模式, 它们⽤于解决什么问题, 它们为什么有效
什么是设计模式 软件设计模式是指在软件设计过程中,经过验证的、可复⽤的、对特定 场景下常⻅问题的解决⽅案的⼀种描述或模板。这些模式并不是具体的 代码,⽽是⽤于指导如何组织代码、类和对象,以便更好地解决问题和 满⾜需求。 ⽤于解决的…...
LeetCode 3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划)
【LetMeFly】3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划) 力扣题目链接:https://leetcode.cn/problems/maximum-sum-of-subsequence-with-non-adjacent-elements/ 给你一个整数数组 nums 和一个二维数组 q…...
ios 快捷指令扩展(Intents Extension)简单使用 swift语言
本文介绍使用Xcode15 建立快捷指令的Extension,并描述如何修改快捷指令的IntentHandler,带参数跳转主应用;以及展示多个选项的快捷指令弹框(配置intentdefinition文件),点击选项带参数跳到主应用的方法 创建快捷指令 快捷指令是…...
虚拟化环境中的精简版 Android 操作系统 Microdroid
随着移动设备的普及和应用场景的多样化,安全性和隐私保护成为了移动操作系统的重要课题。Google推出的Microdroid,是一个专为虚拟化环境设计的精简版Android操作系统,旨在提供一个安全、隔离的执行环境。本文将详细介绍Microdroid的架构、功能…...
NFTScan Site:以蓝标认证与高级项目管理功能赋能 NFT 项目
自 NFTScan Site 上线以来,它迅速成为 NFT 市场中的一支重要力量,凭借对各类 NFT 集合、市场以及 NFTfi 项目的认证获得了广泛认可。这个平台帮助许多项目提升了曝光度和可见性,为它们在竞争激烈的 NFT 市场中创造了更大的成功机会。 在最新更…...
Vue:模板 MVVM
Vue:模板 & MVVM 模板插值语法指令语法 MVVMdefineProperty数据代理 模板 Vue实例绑定一个容器,想要向容器中填入动态的值,就需要使用模板语法。模板语法分为插值语法和指令语法。 插值语法 插值语法很简单,使用{{}}包含一…...
Kafka 消息丢失如何处理?
今天给大家分享一个在面试中经常遇到的问题:Kafka 消息丢失该如何处理? 这个问题啊,看似简单,其实里面藏着很多“套路”。 来,咱们先讲一个面试的“真实”案例。 面试官问:“Kafka 消息丢失如何处理&#x…...
Mysql报错注入之floor报错详解
updatexml extractvalue floor 是mysql的函数 groupbyrandfloorcount 一、简述 利用 select count(),(floor(rand(0)2))x from table group by x,导致数据库报错,通过 concat 函数,连接注入语句与 floor(rand(0)*2)函数,实现将…...
EPS原理笔记
EPS UE(user equipment),移动用户设备 LTE(Long Term Evolution),无线接入网部分,E-UTRAN EPC(system Architecture Evolution、Evoloed Packet Core),核心网部分,主要包括MME、S-GW、P-GW、HSS,连接Intern…...
LeetCode 876. 链表的中间结点
题目描述: 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 示例 1: 输入:head [1,2,3,4,5] 输出:[3,4,5] 解释:链表只有一个中间结点࿰…...
划界与分类的艺术:支持向量机(SVM)的深度解析
划界与分类的艺术:支持向量机(SVM)的深度解析 1. 引言 支持向量机(Support Vector Machine, SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分…...
题目:100条经典C语言笔试题目(1-5)
题目: 1、请填写 bool , float, 指针变量 与“零值”比较的if 语句。 提示:这里“零值”可以是 0, 0.0 , FALSE 或者“空指针” 。例如 int 变量 n 与“零值”比较的 if 语句为: (1)请写出bool flag 与“零值”比较…...
python代码编写规范及注意事项
目录 1. 注意1.1 变量与常量解释:建议的修复: 1.2 Too many arguments 和 Too many local variables解决方案1. 减少参数数量2. 减少局部变量数量3. 调整 Pylint 配置 总结 1. 注意 1.1 变量与常量 解读下面的pylint问题 C0103: Constant name “file_p…...
【Linux】命令行参数 | 环境变量
🪐🪐🪐欢迎来到程序员餐厅💫💫💫 主厨:邪王真眼 主厨的主页:Chef‘s blog 所属专栏:青果大战linux 总有光环在陨落,总有新星在闪烁 前几天在搞硬件&…...
python 使用进程池并发执行 SQL 语句
这段代码使用了 Python 的 multiprocessing 模块来实现真正的并行处理,绕过 Python 的全局解释器锁(GIL)限制,从而在多核 CPU 上并发执行多个 SQL 语句。 from pyhive import hive import multiprocessing# 建立连接 conn hive.…...
我也谈AI
“随着人工智能技术的不断发展,我们已经看到了它在各行业带来的巨大变革。在医疗行业中,人工智能技术正在被应用于病例诊断、药物研发等方面,为医学研究和临床治疗提供了新的思路和方法;在企业中,人工智能技术可以通过…...
算法妙妙屋-------1.递归的深邃回响:二叉树的奇妙剪枝
大佬们好呀,这一次讲解的是二叉树的深度搜索,大佬们请阅 1.前言 ⼆叉树中的深搜(介绍) 深度优先遍历(DFS,全称为DepthFirstTraversal),是我们树或者图这样的数据结构中常⽤的⼀种…...
编写第一个 Appium 测试脚本:从安装到运行!
前言 最近接到一个测试项目,简单描述一下,需求就是:一端发送指令,另一端接受指令并处理指令。大概看了看有上百条指令,点点点岂不是废了,而且后期迭代,每次都需要点点点,想想就头大…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
