【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】

在 Kubernetes 中,Service 是一种抽象,用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多,而其他 Pod
的流量较少时,可能会导致负载不均衡。这种情况不仅影响性能,还可能导致某些 Pod
过载,影响应用的可用性。本文将详细分析此问题的原因及其解决方案。
一、问题描述
在 Kubernetes 中,Service 通常使用轮询或 IP 哈希算法来分配流量到后端 Pod。然而,某些情况下,流量分配可能不均匀,导致:
- 部分 Pod 负载过高,可能出现性能瓶颈。
- 其他 Pod 处于空闲状态,资源未得到充分利用。
二、故障排查步骤
1. 检查 Service 的类型
首先,确认 Service 的类型。不同类型的 Service 处理流量的方式可能不同。
命令
kubectl get svc <service-name>
输出示例
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-service ClusterIP 10.96.0.1 <none> 80/TCP 10m
2. 检查 Pod 的状态和健康
确认所有 Pod 是否正常运行,并且处于 Ready 状态。
命令
kubectl get pods -l app=<app-label>
输出示例
NAME READY STATUS RESTARTS AGE
my-app-1 1/1 Running 0 5m
my-app-2 1/1 Running 0 5m
my-app-3 1/1 Running 0 5m
3. 检查 Pod 的资源使用情况
查看各个 Pod 的 CPU 和内存使用情况,以识别负载不均的情况。
命令
kubectl top pods -l app=<app-label>
输出示例
NAME CPU(cores) MEMORY(bytes)
my-app-1 100m 200Mi
my-app-2 250m 300Mi
my-app-3 50m 100Mi
4. 检查 Service 的 Endpoints
查看 Service 的 Endpoints,确认是否正确指向后端 Pod。
命令
kubectl get endpoints <service-name>
输出示例
NAME ENDPOINTS AGE
my-service 10.244.1.2:8080,10.244.1.3:8080 10m
5. 检查流量分配
使用工具(如 kubectl port-forward)或在应用中添加日志,查看实际请求是如何分配到 Pod 的。
三、常见原因及解决方案
1. Pod 的资源配置不均
问题描述:如果某些 Pod 的资源请求和限制配置不合理,可能导致调度不均。
解决方案:
- 确保所有 Pod 的资源请求和限制合理设置:
resources:requests:cpu: "100m"memory: "256Mi"limits:cpu: "200m"memory: "512Mi"
2. 负载均衡器问题
问题描述:外部负载均衡器可能未均衡地分配流量。
解决方案:
- 检查负载均衡器的配置,确保其算法设置正确。
- 如果使用 NodePort 或 LoadBalancer 类型的 Service,确认其与集群内部流量分配的一致性。
3. 应用逻辑不均衡
问题描述:有些应用可能在处理请求时存在逻辑不均衡,导致部分 Pod 处理的请求更多。
解决方案:
- 检查应用代码,确保请求处理逻辑没有偏向特定的 Pod。
- 考虑使用请求路由或 A/B 测试策略来均衡流量。
4. 使用 Session Affinity
问题描述:如果启用了 Session Affinity,可能会导致某些 Pod 接收更多流量。
解决方案:
- 如果不需要 Session Affinity,可以通过设置 Service 的
sessionAffinity为None来禁用此功能:
spec:sessionAffinity: None
5. Pod 的健康检查不正确
问题描述:Pod 的健康检查配置不当,可能导致某些 Pod 被认为不健康,从而不接收流量。
解决方案:
- 检查并调整健康检查(liveness 和 readiness probes)的配置,确保健康检查准确反映 Pod 的实际状态:
livenessProbe:httpGet:path: /healthzport: 8080initialDelaySeconds: 30periodSeconds: 10
6. 使用 Horizontal Pod Autoscaler
问题描述:流量波动导致负载不均,Cluster Autoscaler 未能及时扩展 Pod。
解决方案:
- 考虑使用 Horizontal Pod Autoscaler (HPA) 根据 CPU 使用量或其他指标自动扩展 Pod 数量:
kubectl autoscale deployment my-app --cpu-percent=50 --min=1 --max=10
四、总结
在 Kubernetes 中,Service 的流量不均匀问题可能由多种因素引起,包括 Pod 的资源配置、外部负载均衡器设置、应用逻辑、健康检查配置等。通过逐步排查 Service 状态、Pod 状态、资源使用情况和流量分配情况,可以有效定位问题并采取相应的解决方案。确保合理的资源配置、健康检查和负载均衡策略,是实现流量均衡的关键。
相关文章:
【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】
在 Kubernetes 中,Service 是一种抽象,用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多,而其他 Pod 的流量较少时,可能会导致负载不均衡。这种情况不仅影响性能,还可能导致某些 Pod 过载,影响应用…...
C-小H学生物
题意:一棵树节点编号为1具有n种不同物种的演化树上。物种i将遗传信息向下传递到物种j会产生dij的遍历。dij是一个长为l的01串。变异程度duv为u到v简单路径上的所有编译信息的异或和。基因多样性定义为 分析:计算Di的遗传信息,用dfs将遗传信息…...
什么是软件设计模式, 它们⽤于解决什么问题, 它们为什么有效
什么是设计模式 软件设计模式是指在软件设计过程中,经过验证的、可复⽤的、对特定 场景下常⻅问题的解决⽅案的⼀种描述或模板。这些模式并不是具体的 代码,⽽是⽤于指导如何组织代码、类和对象,以便更好地解决问题和 满⾜需求。 ⽤于解决的…...
LeetCode 3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划)
【LetMeFly】3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划) 力扣题目链接:https://leetcode.cn/problems/maximum-sum-of-subsequence-with-non-adjacent-elements/ 给你一个整数数组 nums 和一个二维数组 q…...
ios 快捷指令扩展(Intents Extension)简单使用 swift语言
本文介绍使用Xcode15 建立快捷指令的Extension,并描述如何修改快捷指令的IntentHandler,带参数跳转主应用;以及展示多个选项的快捷指令弹框(配置intentdefinition文件),点击选项带参数跳到主应用的方法 创建快捷指令 快捷指令是…...
虚拟化环境中的精简版 Android 操作系统 Microdroid
随着移动设备的普及和应用场景的多样化,安全性和隐私保护成为了移动操作系统的重要课题。Google推出的Microdroid,是一个专为虚拟化环境设计的精简版Android操作系统,旨在提供一个安全、隔离的执行环境。本文将详细介绍Microdroid的架构、功能…...
NFTScan Site:以蓝标认证与高级项目管理功能赋能 NFT 项目
自 NFTScan Site 上线以来,它迅速成为 NFT 市场中的一支重要力量,凭借对各类 NFT 集合、市场以及 NFTfi 项目的认证获得了广泛认可。这个平台帮助许多项目提升了曝光度和可见性,为它们在竞争激烈的 NFT 市场中创造了更大的成功机会。 在最新更…...
Vue:模板 MVVM
Vue:模板 & MVVM 模板插值语法指令语法 MVVMdefineProperty数据代理 模板 Vue实例绑定一个容器,想要向容器中填入动态的值,就需要使用模板语法。模板语法分为插值语法和指令语法。 插值语法 插值语法很简单,使用{{}}包含一…...
Kafka 消息丢失如何处理?
今天给大家分享一个在面试中经常遇到的问题:Kafka 消息丢失该如何处理? 这个问题啊,看似简单,其实里面藏着很多“套路”。 来,咱们先讲一个面试的“真实”案例。 面试官问:“Kafka 消息丢失如何处理&#x…...
Mysql报错注入之floor报错详解
updatexml extractvalue floor 是mysql的函数 groupbyrandfloorcount 一、简述 利用 select count(),(floor(rand(0)2))x from table group by x,导致数据库报错,通过 concat 函数,连接注入语句与 floor(rand(0)*2)函数,实现将…...
EPS原理笔记
EPS UE(user equipment),移动用户设备 LTE(Long Term Evolution),无线接入网部分,E-UTRAN EPC(system Architecture Evolution、Evoloed Packet Core),核心网部分,主要包括MME、S-GW、P-GW、HSS,连接Intern…...
LeetCode 876. 链表的中间结点
题目描述: 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 示例 1: 输入:head [1,2,3,4,5] 输出:[3,4,5] 解释:链表只有一个中间结点࿰…...
划界与分类的艺术:支持向量机(SVM)的深度解析
划界与分类的艺术:支持向量机(SVM)的深度解析 1. 引言 支持向量机(Support Vector Machine, SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分…...
题目:100条经典C语言笔试题目(1-5)
题目: 1、请填写 bool , float, 指针变量 与“零值”比较的if 语句。 提示:这里“零值”可以是 0, 0.0 , FALSE 或者“空指针” 。例如 int 变量 n 与“零值”比较的 if 语句为: (1)请写出bool flag 与“零值”比较…...
python代码编写规范及注意事项
目录 1. 注意1.1 变量与常量解释:建议的修复: 1.2 Too many arguments 和 Too many local variables解决方案1. 减少参数数量2. 减少局部变量数量3. 调整 Pylint 配置 总结 1. 注意 1.1 变量与常量 解读下面的pylint问题 C0103: Constant name “file_p…...
【Linux】命令行参数 | 环境变量
🪐🪐🪐欢迎来到程序员餐厅💫💫💫 主厨:邪王真眼 主厨的主页:Chef‘s blog 所属专栏:青果大战linux 总有光环在陨落,总有新星在闪烁 前几天在搞硬件&…...
python 使用进程池并发执行 SQL 语句
这段代码使用了 Python 的 multiprocessing 模块来实现真正的并行处理,绕过 Python 的全局解释器锁(GIL)限制,从而在多核 CPU 上并发执行多个 SQL 语句。 from pyhive import hive import multiprocessing# 建立连接 conn hive.…...
我也谈AI
“随着人工智能技术的不断发展,我们已经看到了它在各行业带来的巨大变革。在医疗行业中,人工智能技术正在被应用于病例诊断、药物研发等方面,为医学研究和临床治疗提供了新的思路和方法;在企业中,人工智能技术可以通过…...
算法妙妙屋-------1.递归的深邃回响:二叉树的奇妙剪枝
大佬们好呀,这一次讲解的是二叉树的深度搜索,大佬们请阅 1.前言 ⼆叉树中的深搜(介绍) 深度优先遍历(DFS,全称为DepthFirstTraversal),是我们树或者图这样的数据结构中常⽤的⼀种…...
编写第一个 Appium 测试脚本:从安装到运行!
前言 最近接到一个测试项目,简单描述一下,需求就是:一端发送指令,另一端接受指令并处理指令。大概看了看有上百条指令,点点点岂不是废了,而且后期迭代,每次都需要点点点,想想就头大…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
