<项目代码>YOLOv8 猫狗识别<目标检测>
YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。
1.数据集介绍
数据集详情可以参考博主写的文章<数据集>猫狗识别数据集<目标检测>。
2.YOLOv8模型结构
YOLOv8的结构主要分为三部分:Backbone、Neck和Head。
- Backbone
- 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
- 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
- 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
- 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
- YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。
YOLOv8模型的整体结构如下图所示:
3.模型训练结果
YOLOv8在训练结束后,可以在runs
目录下找到训练过程及结果文件,如下图所示:
3.1 map@50指标
3.2 P_curve.png
3.3 R_curve.png
3.4 results.png
3.5 F1_curve
3.6 confusion_matrix
3.7 confusion_matrix_normalized
3.8 验证 batch
标签:
预测结果:
3.9 识别效果图
相关文章:

<项目代码>YOLOv8 猫狗识别<目标检测>
YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…...

存储数据库的传输效率提升-ETLCloud结合HBASE
一、大数据存储数据库–HBASE HBase,作为一个开源的分布式列存储数据库,基于Google的Bigtable设计而成,专为处理大规模结构化数据而优化。使用HBase打造大数据解决方案的好处主要包括:高可扩展性,能够处理PB级的数据&…...

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)
HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab) 目录 HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现HO-XGBoost多变量回归预测&…...

【Hive sql面试题】找出连续活跃3天及以上的用户
表数据如下: 要求:求出连续活跃三天及以上的用户 建表语句和插入数据如下: create table t_useractive(uid string,dt string );insert into t_useractive values(A,2023-10-01 10:10:20),(A,2023-10-02 10:10:20),(A,2023-10-03 10:16…...

Linux curl命令下载显示时间/速度/大小
命令: curl -# -O --compressed -w "大小: %{size_download} bytes\n时间: %{time_total} seconds\n速度: %{speed_download} B/s\n" 下载URL链接。 例子: curl -# -O --compressed -w "大小: %{size_download} bytes\n时间: %{time_to…...

sklearn|机器学习:决策树(一)
文章目录 sklearn|机器学习:决策树(一)(一)概述(二)实战1. 环境配置2. sklearn 中的决策树(1)模块 sklearn.tree(2)sklearn 基本建模流…...

Rust中三种方式使用环境变量
环境变量是存储在操作系统中的一组键值对。它们用于存储系统和其他应用程序所需的配置信息。本文我们将探索如何在Rust中使用标准库以及dotenv crate来处理环境变量。 环境变量 环境变量提供了一种灵活的方式来配置应用程序,而无需直接在源代码中硬编码配置值。这…...

搭建支持国密GmSSL的Nginx环境
准备 1、服务器准备:本文搭建使用的服务器是CentOS 7.6 2、安装包准备:需要GmSSL、国密Nginx,可通过互联网下载或者从 https://download.csdn.net/download/m0_46665077/89936158 下载国密GmSSL安装包和国密Nginx安装包。 服务器安装依赖包…...

Docker部署Portainer CE结合内网穿透实现容器的可视化管理与远程访问
文章目录 前言1. 本地安装Docker2. 本地部署Portainer CE3. 公网远程访问本地Portainer-CE3.1 内网穿透工具安装3.2 创建远程连接公网地址4. 固定Portainer CE公网地址前言 本篇文章介绍如何在Ubuntu中使用docker本地部署Portainer CE可视化管理工具,并结合cpolar实现公网远程…...

不适合的学习方法
文章目录 不适合的学习方法1. 纯粹死记硬背2. 过度依赖单一资料3. 线性学习4. 被动学习5. 一次性学习6. 忽视实践7. 缺乏目标导向8. 过度依赖技术9. 忽视个人学习风格10. 过于频繁的切换 结论 以下是关于不适合的学习方法的更详细描述,包括额外的内容和相关公式&…...

在子类中调用父类的构造函数
在Java中调用父类构造函数 使用super()关键字:在子类的构造函数中,可以使用super()来调用父类的构造函数。如果父类有默认构造函数(即没有参数的构造函数),并且子类的构造函数没有显式调用super(),Java编译…...

【K8S系列】Kubernetes 中 Service 的流量不均匀问题【已解决】
在 Kubernetes 中,Service 是一种抽象,用于定义一组 Pod 的访问策略。当某些 Pod 接收的流量过多,而其他 Pod 的流量较少时,可能会导致负载不均衡。这种情况不仅影响性能,还可能导致某些 Pod 过载,影响应用…...

C-小H学生物
题意:一棵树节点编号为1具有n种不同物种的演化树上。物种i将遗传信息向下传递到物种j会产生dij的遍历。dij是一个长为l的01串。变异程度duv为u到v简单路径上的所有编译信息的异或和。基因多样性定义为 分析:计算Di的遗传信息,用dfs将遗传信息…...

什么是软件设计模式, 它们⽤于解决什么问题, 它们为什么有效
什么是设计模式 软件设计模式是指在软件设计过程中,经过验证的、可复⽤的、对特定 场景下常⻅问题的解决⽅案的⼀种描述或模板。这些模式并不是具体的 代码,⽽是⽤于指导如何组织代码、类和对象,以便更好地解决问题和 满⾜需求。 ⽤于解决的…...

LeetCode 3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划)
【LetMeFly】3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划) 力扣题目链接:https://leetcode.cn/problems/maximum-sum-of-subsequence-with-non-adjacent-elements/ 给你一个整数数组 nums 和一个二维数组 q…...

ios 快捷指令扩展(Intents Extension)简单使用 swift语言
本文介绍使用Xcode15 建立快捷指令的Extension,并描述如何修改快捷指令的IntentHandler,带参数跳转主应用;以及展示多个选项的快捷指令弹框(配置intentdefinition文件),点击选项带参数跳到主应用的方法 创建快捷指令 快捷指令是…...

虚拟化环境中的精简版 Android 操作系统 Microdroid
随着移动设备的普及和应用场景的多样化,安全性和隐私保护成为了移动操作系统的重要课题。Google推出的Microdroid,是一个专为虚拟化环境设计的精简版Android操作系统,旨在提供一个安全、隔离的执行环境。本文将详细介绍Microdroid的架构、功能…...

NFTScan Site:以蓝标认证与高级项目管理功能赋能 NFT 项目
自 NFTScan Site 上线以来,它迅速成为 NFT 市场中的一支重要力量,凭借对各类 NFT 集合、市场以及 NFTfi 项目的认证获得了广泛认可。这个平台帮助许多项目提升了曝光度和可见性,为它们在竞争激烈的 NFT 市场中创造了更大的成功机会。 在最新更…...

Vue:模板 MVVM
Vue:模板 & MVVM 模板插值语法指令语法 MVVMdefineProperty数据代理 模板 Vue实例绑定一个容器,想要向容器中填入动态的值,就需要使用模板语法。模板语法分为插值语法和指令语法。 插值语法 插值语法很简单,使用{{}}包含一…...

Kafka 消息丢失如何处理?
今天给大家分享一个在面试中经常遇到的问题:Kafka 消息丢失该如何处理? 这个问题啊,看似简单,其实里面藏着很多“套路”。 来,咱们先讲一个面试的“真实”案例。 面试官问:“Kafka 消息丢失如何处理&#x…...

Mysql报错注入之floor报错详解
updatexml extractvalue floor 是mysql的函数 groupbyrandfloorcount 一、简述 利用 select count(),(floor(rand(0)2))x from table group by x,导致数据库报错,通过 concat 函数,连接注入语句与 floor(rand(0)*2)函数,实现将…...

EPS原理笔记
EPS UE(user equipment),移动用户设备 LTE(Long Term Evolution),无线接入网部分,E-UTRAN EPC(system Architecture Evolution、Evoloed Packet Core),核心网部分,主要包括MME、S-GW、P-GW、HSS,连接Intern…...

LeetCode 876. 链表的中间结点
题目描述: 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 示例 1: 输入:head [1,2,3,4,5] 输出:[3,4,5] 解释:链表只有一个中间结点࿰…...

划界与分类的艺术:支持向量机(SVM)的深度解析
划界与分类的艺术:支持向量机(SVM)的深度解析 1. 引言 支持向量机(Support Vector Machine, SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分…...

题目:100条经典C语言笔试题目(1-5)
题目: 1、请填写 bool , float, 指针变量 与“零值”比较的if 语句。 提示:这里“零值”可以是 0, 0.0 , FALSE 或者“空指针” 。例如 int 变量 n 与“零值”比较的 if 语句为: (1)请写出bool flag 与“零值”比较…...

python代码编写规范及注意事项
目录 1. 注意1.1 变量与常量解释:建议的修复: 1.2 Too many arguments 和 Too many local variables解决方案1. 减少参数数量2. 减少局部变量数量3. 调整 Pylint 配置 总结 1. 注意 1.1 变量与常量 解读下面的pylint问题 C0103: Constant name “file_p…...

【Linux】命令行参数 | 环境变量
🪐🪐🪐欢迎来到程序员餐厅💫💫💫 主厨:邪王真眼 主厨的主页:Chef‘s blog 所属专栏:青果大战linux 总有光环在陨落,总有新星在闪烁 前几天在搞硬件&…...

python 使用进程池并发执行 SQL 语句
这段代码使用了 Python 的 multiprocessing 模块来实现真正的并行处理,绕过 Python 的全局解释器锁(GIL)限制,从而在多核 CPU 上并发执行多个 SQL 语句。 from pyhive import hive import multiprocessing# 建立连接 conn hive.…...

我也谈AI
“随着人工智能技术的不断发展,我们已经看到了它在各行业带来的巨大变革。在医疗行业中,人工智能技术正在被应用于病例诊断、药物研发等方面,为医学研究和临床治疗提供了新的思路和方法;在企业中,人工智能技术可以通过…...

算法妙妙屋-------1.递归的深邃回响:二叉树的奇妙剪枝
大佬们好呀,这一次讲解的是二叉树的深度搜索,大佬们请阅 1.前言 ⼆叉树中的深搜(介绍) 深度优先遍历(DFS,全称为DepthFirstTraversal),是我们树或者图这样的数据结构中常⽤的⼀种…...