GS-Blur数据集:首个基于3D场景合成的156,209对多样化真实感模糊图像数据集。
2024-10-31,由韩国首尔国立大学的研究团队创建的GS-Blur数据集,通过3D场景重建和相机视角移动合成了多样化的真实感模糊图像,为图像去模糊领域提供了一个大规模、高覆盖度的新工具,显著提升了去模糊算法在真实世界场景中的泛化能力。
数据集地址:GS-Blur|图像去模糊数据集|图像处理数据集
一、研究背景:
图像去模糊是图像恢复领域的一个重要挑战,尤其是在动态场景中,由于相机和物体之间的相对运动,常常会产生模糊的图像。为了训练去模糊网络,需要成对的模糊和清晰图像数据集。现有的数据集通过合成或真实拍摄的方式收集模糊图像,但这些方法要么在模糊类型上缺乏多样性,要么需要大量的人力来重建大规模数据集,无法全面反映现实世界的模糊情况。
目前遇到困难和挑战:
1、现有数据集在模糊类型(模糊轨迹)上的多样性不足,限制了去模糊算法的泛化能力。
2、真实世界模糊图像的捕获需要复杂的相机系统,这限制了数据集的规模和模糊轨迹的多样性。
3、现有数据集在模拟真实世界模糊图像时,往往无法充分覆盖模糊长度和方向的多样性。
数据集地址:GS-Blur|图像去模糊数据集|图像处理数据集
二、让我们一起来看一下GS-Blur数据集
GS-Blur是一个通过3D场景重建和随机相机运动轨迹合成的大规模真实感模糊图像数据集。
利用3D Gaussian Splatting(3DGS)技术,从多视图图像中重建3D场景,然后通过在这些场景中移动相机视角来渲染模糊图像。这种方法允许研究者在3D空间中随机生成相机运动轨迹,从而合成具有不同模糊长度和方向的图像,更好地模拟现实世界的模糊情况。
数据集特点:
1、包含156,209对清晰和模糊图像,覆盖了多样化的模糊类型。
2、通过随机生成的3D运动轨迹,提供了更广泛的模糊长度和方向。
3、合成的模糊图像具有真实感,能够更好地泛化到真实世界的模糊场景。
GS-Blur数据集可以用于训练和评估去模糊算法,通过提供清晰和模糊图像对,研究者可以测试他们的方法在多样化模糊类型上的性能。
基准测试 :
使用GS-Blur数据集训练的去模糊网络在多个现有的去模糊基准测试中表现出色,包括GoPro、REDS、BSD和RSBlur等数据集,证明了其良好的泛化能力。
提议的 GS-Blur 数据集的示例。帧的左半部分显示合成生成的模糊,而右半部分显示尖锐的帧对。
合成、真实和 GS-Blur 数据集的运动分布可视化。
GS-Blur 数据集中生成模糊和清晰图像对的整体管道。
随机生成的 3D 轨迹及其相应的运动模糊图像 的可视化
使用各种模糊生成管道在 GS-Blur 上训练 NAFNet [3] 时的去模糊性能比较。叉号 ✓ 和 ✗分别表示是否应用相应的组件来重建 GS-Blur 数据集。最后一行表示我们最终的 GS-Blur 数据集。
三、让我们展望数据集的应用
比如,我是一名专业的摄影师。
我拍照的时候,有的时候手稍微一抖,或者被拍摄的对象动得太快,那照片就糊了,特别影响效果。
上次,我接了一个拍摄婚礼的任务。婚礼嘛,场面热闹,新娘新郎、亲朋好友都在动,我得抓拍那些美好的瞬间。但是,那天特别的冷,手抖得不行,再加上他们动作太快,好多照片拍出来都是模糊的。我当时用的是传统的后期处理软件,就是那种一键去模糊的功能,但效果真的很一般。有时候照片是清楚了一点,但细节损失严重,有点像油画,不够真实。特别是那些我想要突出的表情和细节,比如新娘的泪光、新郎的笑容,都因为模糊变得不那么清晰了。客户虽然没说什么,但我自己心里清楚,这些照片没能达到我的标准。
现在有了GS-Blur数据集之后,情况就大不一样了。
这个数据集里有大量的模糊和清晰照片对,我可以利用这些数据训练一个更智能的去模糊算法。比如,我在婚礼前,就可以用这个数据集来训练我的算法,让它学会识别和处理各种模糊情况。
在婚礼当天,我还是像往常一样拍照,但是这次,嘻嘻,秘密武器——一个经过GS-Blur数据集训练的去模糊算法。当我拍到模糊的照片时,我就用这个算法来处理。它不仅能减少模糊,还能保持照片的自然感和细节。比如,我可以清楚地看到新娘面纱上的绣花,新郎领带上的纹理,甚至是他们脸上的每一个表情。这些细节在以前用传统软件处理后都会丢失很多。
最最厉害的就是这个算法还能处理那种因为物体快速移动造成的模糊。比如婚礼上的舞蹈环节,以前我根本不敢拍,因为知道拍出来肯定是模糊的。但现在,我用这个算法一处理,那些快速旋转的裙摆、舞动的手臂都变得清晰可见,而且非常自然。
我不再担心因为手抖或者物体快速移动而拍出模糊的照片了,因为我知道,无论发生什么,我都有办法让照片恢复清晰。这让我更有信心地去捕捉那些转瞬即逝的美妙瞬间,也让我的客户更加满意。
来吧,让我们走进GS-Blur|图像去模糊数据集|图像处理数据集
相关文章:

GS-Blur数据集:首个基于3D场景合成的156,209对多样化真实感模糊图像数据集。
2024-10-31,由韩国首尔国立大学的研究团队创建的GS-Blur数据集,通过3D场景重建和相机视角移动合成了多样化的真实感模糊图像,为图像去模糊领域提供了一个大规模、高覆盖度的新工具,显著提升了去模糊算法在真实世界场景中的泛化能力…...

Linux下Java的多种方式安装
Linux下Java的多种方式安装 博客: www.lstar.icu 开源地址 Gitee 地址: https://gitee.com/lxwise/iris-blog_parent Github 地址: https://github.com/lxwise/iris-blog_parent 序言 Java是一门面向对象的编程语言,不仅吸收了…...
Android Studio:connect time out
参考:Android Studio:connect time out_android studio connection timed out-CSDN博客...

A014-基于Spring Boot的家电销售展示平台设计与实现
🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹 赠送计算机毕业设计600…...

数学期望和联合概率密度
数学期望的定义 数学期望是描述随机变量平均趋势的一个重要统计量。根据随机变量的类型(离散或连续),数学期望的定义有所不同。 离散型随机变量的数学期望: 若离散型随机变量 X X X取值为 x 1 , x 2 , … , x n , … x_1,x_2,\do…...

萤石私有化设备视频平台EasyCVR视频融合平台如何构建农业综合监控监管系统?
现代农业的迅速发展中,集成监控管理系统已成为提高农业生产效率和优化管理的关键工具。萤石私有化设备视频平台EasyCVR,作为一个具有高度可扩展性、灵活的视频处理能力和便捷的部署方式的视频监控解决方案,为农业监控系统的建设提供了坚实的技…...

【MongoDB】Windows/Docker 下载安装,MongoDB Compass的基本使用、NoSQL、MongoDB的基础概念及基础用法(超详细)
文章目录 Windows下载MongoDB Compass使用NoSQL的基本概念MongoDB常用术语MongoDB与RDBMS区别MongoDB的CRUD 更多相关内容可查看 Docker安装MongoDB可查看:Docker-安装MongoDB Windows下载 官网下载地址:https://www.mongodb.com/try/download/communi…...
微信小程序-自定义导航栏
一.自定义导航栏 1.JSON文件中配置"navigationStyle": “custom” "navigationStyle": "custom"2.给导航栏设置轮播图 <swiper class"custom-swiper" indicator-dots autoplay interval"2000"> <swiper-item>…...
vue中强制更新视图
vue3 中强制更新视图 方式 通过 $forceUpdate 与 vue2 相似 import {getCurrentInstance} from vueconst internalInstance getCurrentInstance() //操作数据后更新视图 internalInstance.ctx.$forceUpdate()通过 key 值改变更新 <compName :key"key" />co…...
mqsql 场景函数整理
场景1:行数据取多字段,取到有值为止 解决方案: mysql coaleace函数 场景2:字符串拼接文本并换行 解决方案1: mysql concate() 和char(10) 场景3:获取单汉字首拼 解决方案1:单汉字获取首拼 解…...
【AI日记】24.11.05 向量数据库 weaviate、混合搜索、多语言搜索、明确自己的南京
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 工作1 内容:学习deeplearning.ai的课程课程:Vector Databases: from Embeddings to Applications时间:6小时评估:不错,完成收获:学…...

Scrapy入门
Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架。 安装scrapy pip install scrapy2.5.0 1.新建 Scrapy项目 scrapy startproject mySpider # 项目名为mySpider 2.进入到spiders目录 cd mySpider/mySpider/spiders 3.创建爬虫 scrapy gensp…...
Ubantu/Linux 采用Repo或Git命令报错!!
简言: 遇事还是不要慌,出现这些问题,很正常的;如果那些你不需要,只是需要回到某一个版本,那么就是需要,方法可以尝试回退节点,也可以尝试强行merge合入冲突,或找到冲突文件解决,但这些方法都非常的繁杂且不实用。以下是研究出来的解决方案! 记得随时使用git statu…...

C++简单工厂模式
什么是简单工厂模式? 简单工厂模式属于创造型模式,而工厂就是负责生产和创造的,顾名思义。建立对象的类就如一个工厂,而需要被建立的对象就是一个个产品;在工厂中加工产品,使用产品的人,不用在…...

讲讲 kafka 维护消费状态跟踪的方法?
大家好,我是锋哥。今天分享关于【讲讲 kafka 维护消费状态跟踪的方法?】面试题?希望对大家有帮助; 讲讲 kafka 维护消费状态跟踪的方法? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Kafka 中&#x…...
MySQL 和 PostgreSQL 的对比概述
MySQL 和 PostgreSQL 是两种广泛使用的开源关系型数据库管理系统(RDBMS),它们各自有其特点和优缺点。以下将从多个方面对它们进行详细比较。 1. 介绍 MySQL: MySQL 由瑞典公司 MySQL AB 开发,2008 年被 Sun Microsyst…...

【Python单元测试】pytest框架单元测试 配置 命令行操作 测试报告 覆盖率
单元测试(unit test),简称UT。本文将介绍在Python项目中,pytest测试框架的安装,配置,执行,测试报告与覆盖率 pytest简介 pytest是一款流行的,简单易上手的单元测试框架,…...
【牛客刷题记录】【JAVA】栈
(1) 用两个栈实现队列 链接 很简单,如果有元素进入队列,则将其进入stack1。如果要出队列,那么就需要判断stack2的情况。人与法国stack2为空,则直接把stack1的元素全放进stack2(相当于顺序反过来)ÿ…...

【办公类-04-04】华为助手导出照片视频分类(根据图片、视频的文件名日期导入“年-月-日”文件夹中,并转移到“年-月”文件中整理、转移到“年”文件夹中整理)
背景需求 最近带班,没有时间整理照片,偶尔导一次,几个月的照片。发现用电脑版“华为手机助手“中的WLAN连接”与华为手机的“华为手机助手”连接,速度更快、更稳定,不会出现数据线连接时碰碰就断网的问题 1、先打开电…...

62-Java-面试专题(1)__基础
62-Java-面试专题(1)__基础-- 笔记 笔记内容来源与黑马程序员教学视频 文章目录 62-Java-面试专题(1)__基础-- 笔记Java-面试专题(1)笔记中涉及资源: 一、二分查找①:代码实现1. 流程2. 代码实现3. 测试 ②:解决整数溢出(方法一&…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

HTTPS证书一年多少钱?
HTTPS证书作为保障网站数据传输安全的重要工具,成为众多网站运营者的必备选择。然而,面对市场上种类繁多的HTTPS证书,其一年费用究竟是多少,又受哪些因素影响呢? 首先,HTTPS证书通常在PinTrust这样的专业平…...

职坐标物联网全栈开发全流程解析
物联网全栈开发涵盖从物理设备到上层应用的完整技术链路,其核心流程可归纳为四大模块:感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性,例如传感器选型需平衡精度与…...