数学期望和联合概率密度
数学期望的定义
数学期望是描述随机变量平均趋势的一个重要统计量。根据随机变量的类型(离散或连续),数学期望的定义有所不同。
-
离散型随机变量的数学期望:
若离散型随机变量 X X X取值为 x 1 , x 2 , … , x n , … x_1,x_2,\dots,x_n,\dots x1,x2,…,xn,…,且对应的概率为 P ( X = x i ) = p i P(X=x_i)=p_i P(X=xi)=pi,则 X X X的数学期望 E ( X ) E(X) E(X)定义为:
E ( X ) = ∑ i x i p i E(X)=\sum_{i}x_i p_i E(X)=i∑xipi
-
连续型随机变量的数学期望:
若连续型随机变量 X X X的概率密度函数为 f ( x ) f(x) f(x),则 X X X的数学期望 E ( X ) E(X) E(X)定义为:
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}x f(x)\,dx E(X)=∫−∞+∞xf(x)dx
数学期望反映了随机变量在概率意义上的“平均”值。
联合概率密度的定义
联合概率密度函数用于描述两个或多个连续随机变量的联合分布情况。
-
二维连续随机变量的联合概率密度函数:
若 X X X和 Y Y Y是两个连续随机变量,联合概率密度函数 f ( x , y ) f(x,y) f(x,y)满足以下性质:
-
非负性: f ( x , y ) ≥ 0 f(x,y)\geq0 f(x,y)≥0,对于所有 x x x和 y y y。
-
归一化:在整个定义域 D D D上积分为1,即:
∬ D f ( x , y ) d x d y = 1 \iint_{D}f(x,y)\,dx\,dy=1 ∬Df(x,y)dxdy=1
-
概率计算:对于区域 A ⊆ D A\subseteq D A⊆D,随机变量 ( X , Y ) (X,Y) (X,Y)落入该区域的概率为:
P ( ( X , Y ) ∈ A ) = ∬ A f ( x , y ) d x d y P((X,Y)\in A)=\iint_{A}f(x,y)\,dx\,dy P((X,Y)∈A)=∬Af(x,y)dxdy
-
-
高维情况下的联合概率密度:
类似地,对于 n n n个连续随机变量 X 1 , X 2 , … , X n X_1,X_2,\dots,X_n X1,X2,…,Xn,联合概率密度函数 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\dots,x_n) f(x1,x2,…,xn)满足非负性、归一化条件,并可用于计算特定区域内的概率。
联合概率密度函数提供了对两个或多个随机变量之间关系的描述,帮助我们分析它们的联合分布和相依性。
数学期望例题
根据题目中的分布律,随机变量 X X X的取值以及相应的概率 P P P已知。要求的是数学期望 E ( X 2 ) E(X^2) E(X2),即 X 2 X^2 X2的期望值。
数学期望 E ( X 2 ) E(X^2) E(X2)的计算公式是:
E ( X 2 ) = ∑ ( X i 2 ⋅ P ( X i ) ) E(X^2)=\sum(X_i^2\cdot P(X_i)) E(X2)=∑(Xi2⋅P(Xi))
根据表格中的数据:
- 当 X = − 1 X=-1 X=−1时, X 2 = ( − 1 ) 2 = 1 X^2=(-1)^2=1 X2=(−1)2=1,概率 P = 0.4 P=0.4 P=0.4
- 当 X = 0 X=0 X=0时, X 2 = 0 2 = 0 X^2=0^2=0 X2=02=0,概率 P = 0.3 P=0.3 P=0.3
- 当 X = 1 X=1 X=1时, X 2 = 1 2 = 1 X^2=1^2=1 X2=12=1,概率 P = 0.2 P=0.2 P=0.2
- 当 X = 2 X=2 X=2时, X 2 = 2 2 = 4 X^2=2^2=4 X2=22=4,概率 P = 0.1 P=0.1 P=0.1
所以:
E ( X 2 ) = ( 1 × 0.4 ) + ( 0 × 0.3 ) + ( 1 × 0.2 ) + ( 4 × 0.1 ) E(X^2)=(1\times0.4)+(0\times0.3)+(1\times0.2)+(4\times0.1) E(X2)=(1×0.4)+(0×0.3)+(1×0.2)+(4×0.1)
我们可以进行计算:
E ( X 2 ) = 0.4 + 0 + 0.2 + 0.4 = 1.0 E(X^2)=0.4+0+0.2+0.4=1.0 E(X2)=0.4+0+0.2+0.4=1.0
因此,数学期望 E ( X 2 ) = 1.0 E(X^2)=1.0 E(X2)=1.0。
联合概率密度例题
-
设定积分
由于联合概率密度函数 f ( x , y ) = a x e − ( x 2 + y ) f(x,y)=ax e^{-(x^2+y)} f(x,y)=axe−(x2+y),我们要求解常数 a a a的值,使得联合概率密度函数在整个定义域上的积分等于1:1 = ∬ D f ( x , y ) d x d y 1=\iint_{D}f(x,y)\,dx\,dy 1=∬Df(x,y)dxdy
-
分解积分区域
将双重积分分解为对 y y y的积分和对 x x x的积分:1 = ∫ 0 + ∞ ∫ 0 + ∞ a x e − ( x 2 + y ) d x d y 1=\int_{0}^{+\infty}\int_{0}^{+\infty}ax e^{-(x^2+y)}\,dx\,dy 1=∫0+∞∫0+∞axe−(x2+y)dxdy
-
对 x x x积分
在答案中,通过对 x x x积分,得出:∫ 0 + ∞ a x e − ( x 2 + y ) d x = − a 2 ∫ 0 + ∞ e − ( x 2 + y ) d [ − ( x 2 + y ) ] \int_{0}^{+\infty}ax e^{-(x^2+y)}\,dx=-\frac{a}{2}\int_{0}^{+\infty}e^{-(x^2+y)}\,d\left[-\left(x^2+y\right)\right] ∫0+∞axe−(x2+y)dx=−2a∫0+∞e−(x2+y)d[−(x2+y)]
然后再进一步计算得到:
= − a 2 ∫ 0 + ∞ − e − y d y = a 2 =-\frac{a}{2}\int_{0}^{+\infty}-e^{-y}\,dy=\frac{a}{2} =−2a∫0+∞−e−ydy=2a
-
最终结果
通过积分得到 a = 2 a=2 a=2。
因此,根据步骤可以验证该结果的正确性,即最终答案 a = 2 a=2 a=2。
MATLAB实现
在 MATLAB 中,可以利用积分函数来求解期望和联合概率密度。以下是如何计算期望和联合概率密度的代码示例。
1. 计算期望值
假设随机变量 X X X的概率密度函数为 f ( x ) f(x) f(x),期望值 E ( X ) E(X) E(X)可以通过积分来计算。
例如,对于概率密度函数 f ( x ) = x ⋅ e − x f(x)=x\cdot e^{-x} f(x)=x⋅e−x(定义域 x ≥ 0 x\geq0 x≥0),我们可以计算期望 E ( X ) E(X) E(X):
syms x
f_x = x * exp(-x); % 定义概率密度函数
E_X = int(x * f_x, x, 0, inf); % 计算期望
disp('期望 E(X) 为:')
disp(E_X)
在上面的代码中:
syms x
用于定义符号变量 x x x。int
函数对 x ⋅ f ( x ) x\cdot f(x) x⋅f(x)在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)上积分,得到期望。
2. 计算联合概率密度函数积分
假设 X X X和 Y Y Y是两个连续随机变量,其联合概率密度函数为 f ( x , y ) f(x,y) f(x,y)。我们可以通过对 x x x和 y y y积分来验证归一化条件(积分为1)。
例如,对于联合概率密度函数 f ( x , y ) = a ⋅ x ⋅ e − ( x 2 + y ) f(x,y)=a\cdot x\cdot e^{-(x^2+y)} f(x,y)=a⋅x⋅e−(x2+y),其中 x ≥ 0 x\geq0 x≥0和 y ≥ 0 y\geq0 y≥0:
syms x y a
f_xy = a * x * exp(-(x^2 + y)); % 定义联合概率密度函数
integral_result = int(int(f_xy, x, 0, inf), y, 0, inf); % 对x和y分别积分
disp('联合概率密度函数的积分为:')
disp(integral_result)
在上面的代码中:
syms x y a
定义了符号变量 x x x、 y y y和常数 a a a。- 嵌套的
int
函数用于先对 x x x积分,再对 y y y积分,得到联合概率密度函数的归一化条件积分值。
3. 求联合期望 E ( X Y ) E(XY) E(XY)
假设我们希望计算 E ( X Y ) E(XY) E(XY),可以使用以下代码:
E_XY = int(int(x * y * f_xy, x, 0, inf), y, 0, inf); % 计算 E(XY)
disp('期望 E(XY) 为:')
disp(E_XY)
总结
通过以上代码,可以在 MATLAB 中求解期望、联合概率密度函数的积分以及联合期望等。
相关文章:

数学期望和联合概率密度
数学期望的定义 数学期望是描述随机变量平均趋势的一个重要统计量。根据随机变量的类型(离散或连续),数学期望的定义有所不同。 离散型随机变量的数学期望: 若离散型随机变量 X X X取值为 x 1 , x 2 , … , x n , … x_1,x_2,\do…...

萤石私有化设备视频平台EasyCVR视频融合平台如何构建农业综合监控监管系统?
现代农业的迅速发展中,集成监控管理系统已成为提高农业生产效率和优化管理的关键工具。萤石私有化设备视频平台EasyCVR,作为一个具有高度可扩展性、灵活的视频处理能力和便捷的部署方式的视频监控解决方案,为农业监控系统的建设提供了坚实的技…...

【MongoDB】Windows/Docker 下载安装,MongoDB Compass的基本使用、NoSQL、MongoDB的基础概念及基础用法(超详细)
文章目录 Windows下载MongoDB Compass使用NoSQL的基本概念MongoDB常用术语MongoDB与RDBMS区别MongoDB的CRUD 更多相关内容可查看 Docker安装MongoDB可查看:Docker-安装MongoDB Windows下载 官网下载地址:https://www.mongodb.com/try/download/communi…...
微信小程序-自定义导航栏
一.自定义导航栏 1.JSON文件中配置"navigationStyle": “custom” "navigationStyle": "custom"2.给导航栏设置轮播图 <swiper class"custom-swiper" indicator-dots autoplay interval"2000"> <swiper-item>…...
vue中强制更新视图
vue3 中强制更新视图 方式 通过 $forceUpdate 与 vue2 相似 import {getCurrentInstance} from vueconst internalInstance getCurrentInstance() //操作数据后更新视图 internalInstance.ctx.$forceUpdate()通过 key 值改变更新 <compName :key"key" />co…...
mqsql 场景函数整理
场景1:行数据取多字段,取到有值为止 解决方案: mysql coaleace函数 场景2:字符串拼接文本并换行 解决方案1: mysql concate() 和char(10) 场景3:获取单汉字首拼 解决方案1:单汉字获取首拼 解…...
【AI日记】24.11.05 向量数据库 weaviate、混合搜索、多语言搜索、明确自己的南京
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 工作1 内容:学习deeplearning.ai的课程课程:Vector Databases: from Embeddings to Applications时间:6小时评估:不错,完成收获:学…...

Scrapy入门
Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架。 安装scrapy pip install scrapy2.5.0 1.新建 Scrapy项目 scrapy startproject mySpider # 项目名为mySpider 2.进入到spiders目录 cd mySpider/mySpider/spiders 3.创建爬虫 scrapy gensp…...
Ubantu/Linux 采用Repo或Git命令报错!!
简言: 遇事还是不要慌,出现这些问题,很正常的;如果那些你不需要,只是需要回到某一个版本,那么就是需要,方法可以尝试回退节点,也可以尝试强行merge合入冲突,或找到冲突文件解决,但这些方法都非常的繁杂且不实用。以下是研究出来的解决方案! 记得随时使用git statu…...

C++简单工厂模式
什么是简单工厂模式? 简单工厂模式属于创造型模式,而工厂就是负责生产和创造的,顾名思义。建立对象的类就如一个工厂,而需要被建立的对象就是一个个产品;在工厂中加工产品,使用产品的人,不用在…...

讲讲 kafka 维护消费状态跟踪的方法?
大家好,我是锋哥。今天分享关于【讲讲 kafka 维护消费状态跟踪的方法?】面试题?希望对大家有帮助; 讲讲 kafka 维护消费状态跟踪的方法? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Kafka 中&#x…...
MySQL 和 PostgreSQL 的对比概述
MySQL 和 PostgreSQL 是两种广泛使用的开源关系型数据库管理系统(RDBMS),它们各自有其特点和优缺点。以下将从多个方面对它们进行详细比较。 1. 介绍 MySQL: MySQL 由瑞典公司 MySQL AB 开发,2008 年被 Sun Microsyst…...

【Python单元测试】pytest框架单元测试 配置 命令行操作 测试报告 覆盖率
单元测试(unit test),简称UT。本文将介绍在Python项目中,pytest测试框架的安装,配置,执行,测试报告与覆盖率 pytest简介 pytest是一款流行的,简单易上手的单元测试框架,…...
【牛客刷题记录】【JAVA】栈
(1) 用两个栈实现队列 链接 很简单,如果有元素进入队列,则将其进入stack1。如果要出队列,那么就需要判断stack2的情况。人与法国stack2为空,则直接把stack1的元素全放进stack2(相当于顺序反过来)ÿ…...

【办公类-04-04】华为助手导出照片视频分类(根据图片、视频的文件名日期导入“年-月-日”文件夹中,并转移到“年-月”文件中整理、转移到“年”文件夹中整理)
背景需求 最近带班,没有时间整理照片,偶尔导一次,几个月的照片。发现用电脑版“华为手机助手“中的WLAN连接”与华为手机的“华为手机助手”连接,速度更快、更稳定,不会出现数据线连接时碰碰就断网的问题 1、先打开电…...

62-Java-面试专题(1)__基础
62-Java-面试专题(1)__基础-- 笔记 笔记内容来源与黑马程序员教学视频 文章目录 62-Java-面试专题(1)__基础-- 笔记Java-面试专题(1)笔记中涉及资源: 一、二分查找①:代码实现1. 流程2. 代码实现3. 测试 ②:解决整数溢出(方法一&…...

快速构建数据产品原型 —— 我用 VChart Figma 插件
快速构建数据产品原型 —— 我用 VChart Figma 插件 10 种图表类型、24 种内置模板类型、丰富的图表样式配置、自动生成图表实现代码。VChart Figma 插件的目标是提供 便捷好用 & 功能丰富 & 开发友好 的 figma 图表创建能力。目前 VChart 插件功能仍在持续更新中&…...

登录—令牌技术
这里写目录标题 令牌技术2.4.1 JWT令牌2.4.2 jwt使用 令牌技术 令牌,其实它就是一个用户身份的标识,其实本质就是一个字符串。 如果通过令牌技术来跟踪会话,就可以在浏览器发起请求。在请求登录接口的时候,如果登录成功ÿ…...

NPOI 操作详解(操作Excel)
目录 1. 安装 NPOI 2. 使用 NPOI 创建新 Excel 文件 3. 设置列宽和行高 1. 设置列宽 2. 设置行高 3. 同时设置列宽和行高 4. 设置统一的行高 5. 设置统一的列宽 6. 应用统一的行高和列宽 4. 合并单元格 5. 设置单元格样式(字体、边框、背景色等…...

2024年北京海淀区中小学生信息学竞赛校级预选赛试题
2024年北京海淀区中小学生信息学竞赛校级预选赛试题 题目总数:24 总分数:100 编程基础知识单选题 第 1 题 单选题 关于 2024年海淀区信息学竞赛的描述错误的是( ) A.报名在网上报名系统进行 B.必须经过学籍所在学校的指导教师审核 C.学校…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...