优化模型训练过程中的显存使用率、GPU使用率
参考:https://blog.51cto.com/u_16099172/7398948
问题:用小数据集训练显存使用率、GPU使用率正常,但是用大数据集训练GPU使用率一直是0.
小数据:
大数据:
1、我理解GPU内存占用率=显存使用率,由模型的大小以及batch size的大小,来影响这个指标。模型结构固定的情况下,尽量将batch size设置大,充分利用GPU的内存。但是代码中有val部分,val时会只使用gpu0,bs太大可能导致val时候out of memory。
2、gpu利用率。GPU在等待数据从CPU传输过来,当从总线传输到GPU之后,GPU逐渐起计算来,利用率会突然升高,但是GPU的算力很强大,0.5秒就基本能处理完数据。所以利用率接下来又会降下去,等待下一个batch的传入。因此,这个GPU利用率瓶颈在内存带宽和内存介质上以及CPU的性能上面。最好当然就是换更好的四代或者更强大的内存条,配合更好的CPU。硬件都固定的情况下,尝试调节参数优化gpu使用率。
在PyTorch这个框架里面,数据加载Dataloader上做更改和优化,包括num_workers(线程数),pin_memory,会提升速度。解决好数据传输的带宽瓶颈和GPU的运算效率低的问题。
torch.utils.data.DataLoader(image_datasets[x],batch_size=batch_size, shuffle=True,num_workers=8,pin_memory=True)
为了提高利用率,首先要将num_workers(线程数)设置得体,4,8,16是几个常选的几个参数。本人测试过,将num_workers设置的非常大,例如,24,32,等,其效率反而降低,因为模型需要将数据平均分配到几个子线程去进行预处理,分发等数据操作,设高了反而影响效率。当然,线程数设置为1,是单个CPU来进行数据的预处理和传输给GPU,效率也会低。其次,当你的服务器或者电脑的内存较大,性能较好的时候,建议打开pin_memory打开,就省掉了将数据从CPU传入到缓存RAM里面,再给传输到GPU上;为True时是直接映射到GPU的相关内存块上,省掉了一点数据传输时间。
3. CPU的利用率问题
很多人在模型训练过程中,不只是关注GPU的各种性能参数,往往还需要查看CPU处理的怎么样,利用的好不好。这一点至关重要。但是对于CPU,不能一味追求超高的占用率。如图所示,对于14339这个程序来说,其CPU占用率为2349%(我的服务器是32核的,所以最高为3200%)。这表明用了24核CPU来加载数据和做预处理和后处理等。其实主要的CPU花在加载传输数据上。此时,来测量数据加载的时间发现,即使CPU利用率如此之高,其实际数据加载时间是设置恰当的DataLoader的20倍以上,也就是说这种方法来加载数据慢20倍。当DataLoader的num_workers=0时,或者不设置这个参数,会出现这个情况。
相关文章:

优化模型训练过程中的显存使用率、GPU使用率
参考:https://blog.51cto.com/u_16099172/7398948 问题:用小数据集训练显存使用率、GPU使用率正常,但是用大数据集训练GPU使用率一直是0. 小数据: 大数据: 1、我理解GPU内存占用率显存使用率,由模型的大小…...

RocketMQ学习笔记
RocketMQ笔记 文章目录 一、引言⼆、RocketMQ介绍RocketMQ的由来 三、RocketMQ的基本概念1 技术架构2 部署架构 四、快速开始1.下载RocketMQ2.安装RocketMQ3.启动NameServer4.启动Broker5.使⽤发送和接收消息验证MQ6.关闭服务器 五、搭建RocketMQ集群1.RocketMQ集群模式2.搭建主…...

Linux第三讲:环境基础开发工具使用
Linux第三讲:环境基础开发工具使用 1.Linux软件包管理器yum1.1什么是软件包管理器1.2操作系统生态问题1.3什么是yum源 2.vim详解2.1什么是vim2.2vim的多模式讲解2.2.1命令模式的诸多指令2.2.1.1gg和nshiftg2.2.1.2shift$和shift^2.2.1.3上、下、左、右2.2.1.4w和b2.…...
日本TikTok直播的未来:专线网络助力创作者突破极限
近年来,随着短视频平台的崛起,尤其是TikTok(国际版抖音)成为全球范围内广受欢迎的社交娱乐平台,直播功能的加入无疑为内容创作者提供了更广阔的展示舞台。在日本,TikTok直播不仅使得年轻人能够实时与粉丝互…...
如何在家庭网络中设置静态IP地址:一份实用指南
在家庭网络环境中,IP地址扮演着至关重要的角色。大多数家庭用户依赖路由器的DHCP(动态主机配置协议)来自动分配IP地址,但在某些情况下,手动设置静态IP地址能为家庭网络带来更多的便利性与稳定性,尤其是在涉…...

qt QFile详解
1、概述 QFile类是Qt框架中用于读取和写入文本和二进制文件资源的I/O工具类。它继承自QFileDevice类,后者又继承自QIODevice类。QFile类提供了一个接口,允许开发者以二进制模式或文本模式对文件进行读写操作。默认情况下,QFile假定文件内容为…...

ESP8266 自定义固件烧录-Tcpsocket固件
一、固件介绍 固件为自定义开发的一个适配物联网项目的开源固件,支持网页配网、支持网页tcpsocket服务器配置、支持串口波特率设置。 方便、快捷、稳定! 二、烧录说明 固件及工具打包下载地址: https://download.csdn.net/download/flyai…...

内网项目,maven本地仓库离线打包,解决Cannot access central in offline mode?
背景: 内网项目打包,解决Cannot access central in offline mode? 1、修改maven配置文件: localRepository改为本地仓库位置 <localRepository>D:\WorkSpace\WorkSoft\maven-repository\iwhalecloud-repository\business</loca…...

stack和queue --->容器适配器
不支持迭代器,迭代器无法满足他们的性质 边出边判断 实现 #define _CRT_SECURE_NO_WARNINGS 1 #include<iostream> #include<stack> #include<queue> using namespace std; int main() {stack<int> st;st.push(1);st.push(2);st.push(3);…...
ffmpeg视频解码
一、视频解码流程 使用ffmpeg解码视频帧主要可分为两大步骤:初始化解码器和解码视频帧,以下代码以mjpeg为例 1. 初始化解码器 初始化解码器主要有以下步骤: (1)查找解码器 // 查找MJPEG解码器pCodec avcodec_fin…...

前端入门一之CSS知识详解
前言 CSS是前端三件套之一,在MarkDown中也完美兼容这些语法;这篇文章是本人大一学习前端的笔记;欢迎点赞 收藏 关注,本人将会持续更新。 文章目录 Emmet语法:CSS基本语法:css语法结构只有3种:…...

【JS学习】10. web API-BOM
文章目录 Web APIs - 第5天笔记js组成window对象定时器-延迟函数location对象navigator对象histroy对象本地存储(今日重点)localStorage(重点)sessionStorage(了解)localStorage 存储复杂数据类型 综合案例…...
C#实现递归获取所有父级的列表
条件: 父级的id是子级的父id形成递归条件 实现功能: 获取自己到最顶级父级的列表(假如最顶级父级的父ID0) 代码: 解释:CF_CODE是自己的ID,CF_PARENT_ID是父id /// <summary>/// 递归获…...
【深度学习】梯度累加和直接用大的batchsize有什么区别
梯度累加与使用较大的batchsize有类似的效果,但是也有区别 1.内存和计算资源要求 梯度累加: 通过在多个小的mini-batch上分别计算梯度并累积,梯度累积不需要一次加载所有数据,因此显著减少了内存需求。这对于显存有限的设别尤为重…...
【Linux】网络相关的命令
目录 ① ip addr show ② ip route show ③ iptables -nvL ④ ping -I enx00e04c6666c0 192.168.1.100 ⑤ ip route get 192.168.1.100 ⑥ sudo ip addr add dev enx00e04c6666c0 192.168.1.101/24 ⑦ ifconfig ⑧ netstat ⑨ traceroute ⑩ nslookup ① ip addr sho…...
leetcode哈希表(五)-四数相加II
题目 454.四数相加II 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 < i, j, k, l < nnums1[i] nums2[j] nums3[k] nums4[l] 0 示例 1: 输入&…...

Java学习路线:Maven(一)认识Maven
目录 认识Maven 新建Maven文件 导入依赖 认识Maven Maven是一个Java的项目管理工具,通过Maven,我们可以实现: 项目自动构建,包括代码的编译、测试、打包、安装等依赖管理,快速完成依赖的导入 在学习Maven之前&…...

【深度学习】— 多输入多输出通道、多通道输入的卷积、多输出通道、1×1 卷积层、汇聚层、多通道汇聚层
【深度学习】— 多输入多输出通道、多通道输入的卷积、多输出通道、11 卷积层、汇聚层、多通道汇聚层 多输入多输出通道多通道输入的卷积示例:多通道的二维互相关运算 多输出通道实现多通道输出的互相关运算 11 卷积层11 卷积的作用 使用全连接层实现 11 卷积小结 …...
java mapper 的 xml讲解
<?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <mapper namespace"com.bnc.s12.mapper.GoodaCateDT…...

全面解析:区块链技术及其应用
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 全面解析:区块链技术及其应用 文章目录 全面解析:区块链技术及其应用什么是区块链区块链的工作原理1. 分…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...