粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
目录
- 粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览






基本介绍
1.Matlab实现PSO-BiTCN-BiGRU-Attention粒子群算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细;
5.适用对象:大学生课程设计、期末大作业和毕业设计。

程序设计
- 完整程序和数据下载私信博主回复粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据平铺
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test = t_test' ;%% 数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502
相关文章:
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测 目录 粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现PSO-BiTCN-BiGRU-Attention粒子…...
排序算法简介
直接插入排序: 将第一个元素视为已排序的序列,其余元素视为未排序序列。 逐个处理:从第二个元素开始,逐个将当前元素插入到已排序序列的适当位置,直到所有元素都被插入。 插入过程:对于每个待…...
(没有跳过联网激活)导致使用微软账号激活电脑---修改为本地账户和英文名字
修改为本地账户和英文名字 前言微软账号,本地账号与用户名基本知识账户管理方式一方式2 查看账户的sid并且修改文件夹名字和系统变量修改注册表和建立软件路径超链接注意事项总结 前言 当没有联网激活新买的电脑时候,这个就不用看了 当你是联网激活的时…...
[论文粗读][REALM: Retrieval-Augmented Language Model Pre-Training
引言 今天带来一篇检索增强语言模型预训练论文笔记——REALM: Retrieval-Augmented Language Model Pre-Training。这篇论文是在RAG论文出现之前发表的。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 语言模型预训练…...
flink 内存配置(五):网络缓存调优
flink 内存配置(一):设置Flink进程内存 flink 内存配置(二):设置TaskManager内存 flink 内存配置(三):设置JobManager内存 flink 内存配置(四)…...
set和map的使用
目录 1.关联式容器 2.键值对 3.set 3.1set的模版参数列表 3.2对set的修改 3.2.1insert 3.2.2 erase 3.2.3clear 3.2.4swap 3.2.5 find 3.3set的迭代器 3.4set的容量 4.map 4.1对map的修改 4.1.1insert 4.1.2erase 4.1.3swap 4.1.4clear 4.2map的迭代器 4.3opera…...
LCL三相并网逆变器simulink仿真+说明文档
背景描述: 详细解析了LCL三相并网逆变器的工作原理,强调了准PR比例谐振控制的重要性,讨论了电感、电容参数选择及保护电路设计。通过仿真结果展示了逆变器性能优化的方法,以提升系统效率和稳定性。 模型介绍: 整体模…...
从0开始深度学习(24)——填充和步幅
1 填充 在上一节中,我们的卷积步骤如下: 可以发现输入是 3 3 3\times3 33,输出是 2 2 2\times2 22,这样可能会导致原始图像的边界丢失了许多有用信息,如果应用多层卷积核,累积丢失的像素就更多了&#…...
CPU Study - Instructions Fetch
参考来源:《超标量处理器设计》—— 姚永斌 N-Way CPU 取指问题 如果CPU可以在每个周期内同时解码N条指令,则此类CPU为N-Way超标量处理器。 N-Way超标量处理器需要每个周期从I-Cache中至少取得N条指令,这N条指令成为一组Fetch Group。 为了…...
GJ Round (2024.9) Round 1~7
前言: 点此返回 GJ Round 目录 博客园可能食用更佳 Round 1 (9.10) A 洛谷 P10059 Choose 不难发现结论:记长度为 L L L 时对应的 X X X 最大值为 f ( L ) f(L) f(L),则 f ( L ) f(L) f(L) 单调不降 那么就可以考虑使用二分求出最小的…...
【CMCL】多模态情感识别的跨模态对比学习
abstract 近年来,多模态情感识别因其能够通过整合多模态信息来提高情感识别的准确性而受到越来越多的关注。然而,模态差异导致的异质性问题对多模态情感识别提出了重大挑战。在本文中,我们提出了一个新的框架——跨模态对比学习(…...
输入/输出系统
一、I/O 系统基本概念(了解即可) 1. 输入/输出系统 【总结】: “I/O” 就是 “输入 / 输出”(Input/Output),I/O 设备就是可以将数据输入到计算机,或者可以接收计算机输出数据的外部设备。 输…...
asp.net+uniapp养老助餐管理系统 微信小程序
文章目录 项目介绍具体实现截图技术介绍mvc设计模式小程序框架以及目录结构介绍错误处理和异常处理java类核心代码部分展示详细视频演示源码获取 项目介绍 以往流浪猫狗的救助网站相关信息的管理,都是工作人员手工统计。这种方式不但时效性低,而且需要查…...
部署istio应用未能产生Envoy sidecar代理
1. 问题描述及原因分析 在部署Prometheus、Grafana、Zipkin、Kiali监控度量Istio的第2.2章节,部署nginx应用,创建的pod并没有产生Envoy sidecar代理,仅有一个应用容器运行中 故在随后的prometheus中也没有产生指标istio_requests_total。通…...
使用YOLO 模型进行线程安全推理
使用YOLO 模型进行线程安全推理 一、了解Python 线程二、共享模型实例的危险2.1 非线程安全示例:单个模型实例2.2 非线程安全示例:多个模型实例 三、线程安全推理3.1 线程安全示例 四、总结4.1 在Python 中运行多线程YOLO 模型推理的最佳实践是什么&…...
ABAP 增强
一、增强 基于SAP源代码的增强:对SAP所预留的空的子过程进行编码,用户可以编辑此子过程,并在这个子过程中添加自定义的代码,以增加SAP标准程序的控制功能 PERFORM 基于函数的增强:SAP为此类出口提供了相应的函数&am…...
vue使用方法创建组件
vue 中 创建 组件 使用 方法创建组件 vue2 中 import vueComponent from xxxx function createFn(){const creator Vue.extend(vueComponent);const instance new creator();document.appendChild(instance.$el); }vue3 中 import { createApp } from "vue"; im…...
HTML 基础标签——链接标签 <a> 和 <iframe>
文章目录 1. `<a>` 标签属性详细说明示例2. `<iframe>` 标签属性详细说明示例注意事项总结链接标签在HTML中是实现网页导航的重要工具,允许用户从一个页面跳转到另一个页面或嵌入外部内容。主要的链接标签包括 <a> 标签和<iframe> 标签。本文将深入探…...
@SpringBootApplication源码解析
1 简介 1.1 什么是自动装配? 自动装配是指 Spring Boot 在启动时,根据类路径上的依赖项自动配置应用程序。例如,如果你的应用程序依赖于 Spring Data JPA,Spring Boot 会自动配置一个 DataSource、EntityManagerFactory 和其他必…...
【实战篇】requests库 - 有道云翻译爬虫 【附:代理IP的使用】
目录 〇、引言一、目标二、请求参数分析三、响应分析四、编写爬虫脚本【隧道代理的使用】 〇、引言 无论是学习工作、旅游出行、跨境电商、日常交流以及一些专业领域都离不开翻译工具的支持。本文就带大家通过爬虫的方式开发一款属于自己的翻译工具~ 一、目标 如下的翻译接口…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
