[Python]关于Tensorflow+Keras+h5py+numpy一些骚操作备忘
起因:要在Anaconda使用Tensorflow和Keras框架
这里提前小结一下:
1,一定要注意Python、Tensorflow、Keras不同版本的对应关系。
2,交叉用conda install 和pip install安装依赖库可能容易出现问题,在Anaconda虚拟环境,能用pip安装的尽量用pip安装。如果用conda install安装,它会自动安装相关的一系列依赖库,可能会导致跟pip安装的起冲突;如果一定要用conda install安装,建议先执行conda install来安装,再直接执行.py文件,看看出错信息再用pip instal来补充安装。
3,最后我在Windows10 64位CPU环境使用的是:python 3.7.1,tensorflow 2.6.0,keras 2.6.0,h5py和numpy是通过"conda install tensorflow==2.6.0"自动安装的。
这里列举一下我在操作过程中前后出现了诸多问题及当时解决办法。
问题1:
error: uninstall-no-record-file
× Cannot uninstall numpy 1.25.0
╰─> The package's contents are unknown: no RECORD file was found for numpy.
hint: You might be able to recover from this via: pip install --force-reinstall --no-deps numpy==1.25.0
原因:用conda install安装tensorflow之后,会自动安装依赖的numpy库,导致与之前pip安装的numpy发生冲突。
解决:(当时试过根据上面提示来操作,但不顶用)实际操作:重新创建虚拟环境,先不安装numpy,而是直接使用conda install 安装tensorflow。
问题2:
File "E:\anaconda3\envs\py37\lib\site-packages\keras\engine\saving.py", line 1183, in load_weights_from_hdf5_group original_keras_version = f.attrs['keras_version'].decode('utf8') AttributeError: 'str' object has no attribute 'decode'
问题3:
File "E:\anaconda3\envs\py37\lib\site-packages\tensorflow_core\python\util\module_wrapper.py", line 193, in __getattr__ attr = getattr(self._tfmw_wrapped_module, name) AttributeError: module 'tensorflow._api.v1.compat.v2' has no attribute '__internal__'
原因:上面这两个问题都是由于tensorflow版本keras版本对应有问题造成的。
解决:选用合适的版本,我选了tensorflow 2.6.0和keras 2.6.0
问题4:
File "h5py\h5.pyx", line 41, in init h5py.h5 AttributeError: type object 'h5py.h5.H5PYConfig' has no attribute '__reduce_cython__'
原因:就是pip安装了h5py和conda install暗转的有冲突,
解决:卸载了pip安装的h5py
pip uninstall h5py
问题5:
File "E:\anaconda3\envs\py37\lib\site-packages\keras\dtensor\__init__.py", line 22, in <module>
from tensorflow.compat.v2.experimental import dtensor as dtensor_api
ImportError: cannot import name 'dtensor' from 'tensorflow.compat.v2.experimental'
这个问题本质也是tensorflow和keras版本对应不上造成的,
但是,但是,但是,
我的原因是,用conda install安装了tensorflow和keras
conda install tensorflow==2.6.0 keras==2.6.0
解决:
先卸载keras:
conda remove keras
再用pip安装keras:
pip install keras==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
这是一步奇葩操作。
相关文章:
[Python]关于Tensorflow+Keras+h5py+numpy一些骚操作备忘
起因:要在Anaconda使用Tensorflow和Keras框架 这里提前小结一下: 1,一定要注意Python、Tensorflow、Keras不同版本的对应关系。 2,交叉用conda install 和pip install安装依赖库可能容易出现问题,在Anaconda虚拟环境…...
深度学习:Transformer 详解
Transformer 详解 对于Transformer模型的详细解释,可以更深入地探讨其各个组成部分、工作原理、以及在自然语言处理任务中的应用方法。以下是对Transformer模型的一个更全面和详细的解释,包括其架构细节和关键技术: 1. 基本架构 Transform…...

jmeter 性能测试步骤是什么?
JMeter是一款流行的开源性能测试工具,用于测试各种服务器和网络应用的性能。在进行JMeter性能测试时,通常需要遵循以下步骤: 确定测试目标:首先,明确性能测试的目标。这可以是测试一个网站的负载能力、测试一个API的响…...
前端入门一之JS最基础、最基础语法
前言 JS是前端三件套之一,也是核心,本人将会更新JS基础、JS对象、DOM、BOM、ES6等知识点;这篇文章是本人大一学习前端的笔记;欢迎点赞 收藏 关注,本人将会持续更新。 文章目录 初体验输入输出语句变量和常量常量变量…...
解决Swp交换空间被占满问题
解决ubuntu交换空间被占满问题 step1: cat /proc/sys/vm/swappiness 60 step2: sudo sysctl vm.swappiness10 #临时修改 step3: sudo sh -c “echo “vm.swappiness10” >> /etc/sysctl.conf” step4: sysctl -p #生效...
草地景观中的土地覆被变化:将增强型大地遥感卫星数据组成、LandTrendr 和谷歌地球引擎中的机器学习分类与 MLP-ANN 场景预测相结合
目录 简介 方法 结论 代码1:影像集合 代码2: 随机森林和svm分类 结果 简介 了解草原生境在空间和时间上的动态对于评估保护措施的有效性和制定可持续管理方法至关重要,特别是在自然 2000 网络和欧洲生物多样性战略范围内。 根据遥感数据绘制的土地覆盖图对于了解植被…...
【c++语言程序设计】字符串与浅层复制(深拷贝与浅拷贝)
字符串常量是用一对双引号括起来的字符序列,例如,"abcd" " China"" This is a string." 都是字符串常量。它在内存中的存放形式是,按串中字符的排列次序顺序存放,每个字符占1字节,并在末…...

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)
《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1) 《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)理解TCP和UDPTCP/IP协议栈TCP/IP协议的诞生背景链路层网络层T…...
深入解析gdb -p 与gdb attach 的区别与使用场景
摘要:本文将详细对比gdb -p 与gdb attach 这两个命令的使用方法、场景及优缺点,帮助读者更好地理解并运用这两个调试工具。 一、引言 在Linux系统中,GDB(GNU Debugger)是一款功能强大的调试工具,广泛应用…...

C语言 | Leetcode C语言题解之第542题01矩阵
题目: 题解: /*** Return an array of arrays of size *returnSize.* The sizes of the arrays are returned as *returnColumnSizes array.* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().*/ type…...

论文阅读笔记:Image Processing GNN: Breaking Rigidity in Super-Resolution
论文阅读笔记:Image Processing GNN: Breaking Rigidity in Super-Resolution 1 背景2 创新点3 方法4 模块4.1 以往SR模型的刚性4.2 图构建4.2.1 度灵活性4.2.2 像素节点灵活性4.2.3 空间灵活性 4.3 图聚合4.4 多尺度图聚合模块MGB4.5 图聚合层GAL 5 效果5.1 和SOTA…...

前端介绍|基础入门-html+css+js
文章目录 本课程有什么?前端是什么?1. **前端概述**2. **前端的工作职责**3. **前端技术栈**6. **前端开发工具**7. **HTML、CSS、JS的关系** 本课程有什么? 本套课程是零基础入门保姆级课程,课程主要内容包含: HTML…...

[WSL][桌面][X11]WSL2 Ubuntu22.04 安装Ubuntu桌面并且实现GUI转发(Gnome)
1. WSL安装 这里不再赘述,WSL2支持systemd,如果你发现其没有systemd相关指令,那么你应该看看下面这个 https://blog.csdn.net/noneNull0/article/details/135950369 但是,Ubuntu2204用不了这个脚本,比较蛋疼。 – …...

PMC如何根据实际情况调整生产作业计划?
面对原材料价格波动、市场需求突变、供应链不确定性增加等多重挑战,PMC人员如何根据实际情况迅速调整生产作业计划,成为了决定企业能否稳健前行的关键。今天,天行健企业管理咨询公司就来深入探讨,PMC高手们是如何在复杂多变的环境…...
unity中 骨骼、纹理和材质关系
在Unity和游戏开发中,骨骼(Skeleton)、纹理(Texture)和材质(Material)是角色和物体渲染的关键组成部分,它们各自的作用和关系密切关联,通常共同工作来实现一个模型的最终…...

18、论文阅读:AOD-Net:一体化除雾网络
AOD-Net: All-in-One Dehazing Network 前言介绍相关工作物理模型传统方法深度学习方法 建模与扩展变换后的公式网络设计与高级特征任务相结合 除雾评价数据集和实现 前言 该论文提出了一种基于卷积神经网络(CNN)的图像去雾模型,称为 All-in…...

Hadoop生态圈框架部署(五)- Zookeeper完全分布式部署
文章目录 前言一、Zookeeper完全分布式部署(手动部署)1. 下载Zookeeper2. 上传安装包2. 解压zookeeper安装包3. 配置zookeeper配置文件3.1 创建 zoo.cfg 配置文件3.2 修改 zoo.cfg 配置文件3.3 创建数据持久化目录并创建myid文件 4. 虚拟机hadoop2安装并…...

【机器学习】聚类算法分类与探讨
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...
MySQL中distinct与group by之间的性能进行比较
在 MySQL 中,DISTINCT 和 GROUP BY 都是用于去重或汇总数据的常用 SQL 语法。尽管它们在某些情况下能产生相同的结果,但它们的内部工作方式和性能表现可能有所不同。理解这两者的差异,对于选择正确的语法非常重要,尤其是在处理大量…...

计算机视觉读书系列(1)——基本知识与深度学习基础
研三即将毕业,后续的工作可能会偏AI方向的计算机视觉方面,因此准备了两条线来巩固计算机视觉基础。 一个是本系列,阅读经典《Deep Learning for Vision System》,做一些总结跑一些例子,也对应本系列文章 二是OpenCV实…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
[USACO23FEB] Bakery S
题目描述 Bessie 开了一家面包店! 在她的面包店里,Bessie 有一个烤箱,可以在 t C t_C tC 的时间内生产一块饼干或在 t M t_M tM 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC,tM≤109)。由于空间…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...