[Python]关于Tensorflow+Keras+h5py+numpy一些骚操作备忘
起因:要在Anaconda使用Tensorflow和Keras框架
这里提前小结一下:
1,一定要注意Python、Tensorflow、Keras不同版本的对应关系。
2,交叉用conda install 和pip install安装依赖库可能容易出现问题,在Anaconda虚拟环境,能用pip安装的尽量用pip安装。如果用conda install安装,它会自动安装相关的一系列依赖库,可能会导致跟pip安装的起冲突;如果一定要用conda install安装,建议先执行conda install来安装,再直接执行.py文件,看看出错信息再用pip instal来补充安装。
3,最后我在Windows10 64位CPU环境使用的是:python 3.7.1,tensorflow 2.6.0,keras 2.6.0,h5py和numpy是通过"conda install tensorflow==2.6.0"自动安装的。
这里列举一下我在操作过程中前后出现了诸多问题及当时解决办法。
问题1:
error: uninstall-no-record-file
× Cannot uninstall numpy 1.25.0
╰─> The package's contents are unknown: no RECORD file was found for numpy.
hint: You might be able to recover from this via: pip install --force-reinstall --no-deps numpy==1.25.0
原因:用conda install安装tensorflow之后,会自动安装依赖的numpy库,导致与之前pip安装的numpy发生冲突。
解决:(当时试过根据上面提示来操作,但不顶用)实际操作:重新创建虚拟环境,先不安装numpy,而是直接使用conda install 安装tensorflow。
问题2:
File "E:\anaconda3\envs\py37\lib\site-packages\keras\engine\saving.py", line 1183, in load_weights_from_hdf5_group original_keras_version = f.attrs['keras_version'].decode('utf8') AttributeError: 'str' object has no attribute 'decode'
问题3:
File "E:\anaconda3\envs\py37\lib\site-packages\tensorflow_core\python\util\module_wrapper.py", line 193, in __getattr__ attr = getattr(self._tfmw_wrapped_module, name) AttributeError: module 'tensorflow._api.v1.compat.v2' has no attribute '__internal__'
原因:上面这两个问题都是由于tensorflow版本keras版本对应有问题造成的。
解决:选用合适的版本,我选了tensorflow 2.6.0和keras 2.6.0
问题4:
File "h5py\h5.pyx", line 41, in init h5py.h5 AttributeError: type object 'h5py.h5.H5PYConfig' has no attribute '__reduce_cython__'
原因:就是pip安装了h5py和conda install暗转的有冲突,
解决:卸载了pip安装的h5py
pip uninstall h5py
问题5:
File "E:\anaconda3\envs\py37\lib\site-packages\keras\dtensor\__init__.py", line 22, in <module>
from tensorflow.compat.v2.experimental import dtensor as dtensor_api
ImportError: cannot import name 'dtensor' from 'tensorflow.compat.v2.experimental'
这个问题本质也是tensorflow和keras版本对应不上造成的,
但是,但是,但是,
我的原因是,用conda install安装了tensorflow和keras
conda install tensorflow==2.6.0 keras==2.6.0
解决:
先卸载keras:
conda remove keras
再用pip安装keras:
pip install keras==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
这是一步奇葩操作。
相关文章:

[Python]关于Tensorflow+Keras+h5py+numpy一些骚操作备忘
起因:要在Anaconda使用Tensorflow和Keras框架 这里提前小结一下: 1,一定要注意Python、Tensorflow、Keras不同版本的对应关系。 2,交叉用conda install 和pip install安装依赖库可能容易出现问题,在Anaconda虚拟环境…...

深度学习:Transformer 详解
Transformer 详解 对于Transformer模型的详细解释,可以更深入地探讨其各个组成部分、工作原理、以及在自然语言处理任务中的应用方法。以下是对Transformer模型的一个更全面和详细的解释,包括其架构细节和关键技术: 1. 基本架构 Transform…...

jmeter 性能测试步骤是什么?
JMeter是一款流行的开源性能测试工具,用于测试各种服务器和网络应用的性能。在进行JMeter性能测试时,通常需要遵循以下步骤: 确定测试目标:首先,明确性能测试的目标。这可以是测试一个网站的负载能力、测试一个API的响…...

前端入门一之JS最基础、最基础语法
前言 JS是前端三件套之一,也是核心,本人将会更新JS基础、JS对象、DOM、BOM、ES6等知识点;这篇文章是本人大一学习前端的笔记;欢迎点赞 收藏 关注,本人将会持续更新。 文章目录 初体验输入输出语句变量和常量常量变量…...

解决Swp交换空间被占满问题
解决ubuntu交换空间被占满问题 step1: cat /proc/sys/vm/swappiness 60 step2: sudo sysctl vm.swappiness10 #临时修改 step3: sudo sh -c “echo “vm.swappiness10” >> /etc/sysctl.conf” step4: sysctl -p #生效...

草地景观中的土地覆被变化:将增强型大地遥感卫星数据组成、LandTrendr 和谷歌地球引擎中的机器学习分类与 MLP-ANN 场景预测相结合
目录 简介 方法 结论 代码1:影像集合 代码2: 随机森林和svm分类 结果 简介 了解草原生境在空间和时间上的动态对于评估保护措施的有效性和制定可持续管理方法至关重要,特别是在自然 2000 网络和欧洲生物多样性战略范围内。 根据遥感数据绘制的土地覆盖图对于了解植被…...

【c++语言程序设计】字符串与浅层复制(深拷贝与浅拷贝)
字符串常量是用一对双引号括起来的字符序列,例如,"abcd" " China"" This is a string." 都是字符串常量。它在内存中的存放形式是,按串中字符的排列次序顺序存放,每个字符占1字节,并在末…...

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)
《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1) 《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)理解TCP和UDPTCP/IP协议栈TCP/IP协议的诞生背景链路层网络层T…...

深入解析gdb -p 与gdb attach 的区别与使用场景
摘要:本文将详细对比gdb -p 与gdb attach 这两个命令的使用方法、场景及优缺点,帮助读者更好地理解并运用这两个调试工具。 一、引言 在Linux系统中,GDB(GNU Debugger)是一款功能强大的调试工具,广泛应用…...

C语言 | Leetcode C语言题解之第542题01矩阵
题目: 题解: /*** Return an array of arrays of size *returnSize.* The sizes of the arrays are returned as *returnColumnSizes array.* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().*/ type…...

论文阅读笔记:Image Processing GNN: Breaking Rigidity in Super-Resolution
论文阅读笔记:Image Processing GNN: Breaking Rigidity in Super-Resolution 1 背景2 创新点3 方法4 模块4.1 以往SR模型的刚性4.2 图构建4.2.1 度灵活性4.2.2 像素节点灵活性4.2.3 空间灵活性 4.3 图聚合4.4 多尺度图聚合模块MGB4.5 图聚合层GAL 5 效果5.1 和SOTA…...

前端介绍|基础入门-html+css+js
文章目录 本课程有什么?前端是什么?1. **前端概述**2. **前端的工作职责**3. **前端技术栈**6. **前端开发工具**7. **HTML、CSS、JS的关系** 本课程有什么? 本套课程是零基础入门保姆级课程,课程主要内容包含: HTML…...

[WSL][桌面][X11]WSL2 Ubuntu22.04 安装Ubuntu桌面并且实现GUI转发(Gnome)
1. WSL安装 这里不再赘述,WSL2支持systemd,如果你发现其没有systemd相关指令,那么你应该看看下面这个 https://blog.csdn.net/noneNull0/article/details/135950369 但是,Ubuntu2204用不了这个脚本,比较蛋疼。 – …...

PMC如何根据实际情况调整生产作业计划?
面对原材料价格波动、市场需求突变、供应链不确定性增加等多重挑战,PMC人员如何根据实际情况迅速调整生产作业计划,成为了决定企业能否稳健前行的关键。今天,天行健企业管理咨询公司就来深入探讨,PMC高手们是如何在复杂多变的环境…...

unity中 骨骼、纹理和材质关系
在Unity和游戏开发中,骨骼(Skeleton)、纹理(Texture)和材质(Material)是角色和物体渲染的关键组成部分,它们各自的作用和关系密切关联,通常共同工作来实现一个模型的最终…...

18、论文阅读:AOD-Net:一体化除雾网络
AOD-Net: All-in-One Dehazing Network 前言介绍相关工作物理模型传统方法深度学习方法 建模与扩展变换后的公式网络设计与高级特征任务相结合 除雾评价数据集和实现 前言 该论文提出了一种基于卷积神经网络(CNN)的图像去雾模型,称为 All-in…...

Hadoop生态圈框架部署(五)- Zookeeper完全分布式部署
文章目录 前言一、Zookeeper完全分布式部署(手动部署)1. 下载Zookeeper2. 上传安装包2. 解压zookeeper安装包3. 配置zookeeper配置文件3.1 创建 zoo.cfg 配置文件3.2 修改 zoo.cfg 配置文件3.3 创建数据持久化目录并创建myid文件 4. 虚拟机hadoop2安装并…...

【机器学习】聚类算法分类与探讨
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...

MySQL中distinct与group by之间的性能进行比较
在 MySQL 中,DISTINCT 和 GROUP BY 都是用于去重或汇总数据的常用 SQL 语法。尽管它们在某些情况下能产生相同的结果,但它们的内部工作方式和性能表现可能有所不同。理解这两者的差异,对于选择正确的语法非常重要,尤其是在处理大量…...

计算机视觉读书系列(1)——基本知识与深度学习基础
研三即将毕业,后续的工作可能会偏AI方向的计算机视觉方面,因此准备了两条线来巩固计算机视觉基础。 一个是本系列,阅读经典《Deep Learning for Vision System》,做一些总结跑一些例子,也对应本系列文章 二是OpenCV实…...

怎么查看navicat的数据库密码
步骤1:打开navicat连接数据库工具,顶部的文件栏-导出结果-勾选导出密码-导出 步骤2:导出结果使用NotePad或文本打开,找到,数据库对应的的Password"995E66F64A15F6776“”的值复制下来 <Connection ConnectionName"…...

webrtc前端播放器完整案例
https://download.csdn.net/download/jinhuding/89961792...

GORM优化器和索引提示
在使用 GORM 进行数据库操作时,优化器和索引提示可以帮助你提高查询性能。GORM 提供了一些方法来利用这些特性。 优化器提示 优化器提示(Optimizer Hints)是数据库系统提供的功能,用于指导查询优化器如何处理查询。不同的数据库…...

linux驱动-i2c子系统框架学习(1)
可以将整个 I2C 子系统用下面的框图来描述: 可以将上面这一 I2C 子系统划分为三个层次,分别为用户空间、内核空间和硬件层,内核空间就包括 I2C 设备驱动层、I2C 核心层和 I2C 适配器驱动层, 本篇主要内容就是介绍 I2C 子系统框架中…...

元戎启行嵌入式面试题及参考答案
介绍下 CAN 通信原理 控制器局域网(CAN)是一种串行通信协议,主要用于汽车、工业自动化等领域的电子控制单元(ECU)之间的通信。 其通信原理是基于多主站架构。在总线上,多个节点(设备)都可以主动发起通信。CAN 协议使用差分信号来传输数据,通过两条信号线 CAN_H 和 CAN…...

【EasyExcel】EasyExcel导出表格包含合计行、自定义样式、自适应列宽
目录 0 EasyExcel简介1 Excel导出工具类设置自定义表头样式设置自适应列宽添加合计行 2 调用导出工具类导出Excel表3 测试结果 0 EasyExcel简介 在数据处理和报表生成的过程中,Excel是一个非常常用的工具。特别是在Java开发中,EasyExcel库因其简单高效而…...

es数据同步(仅供自己参考)
数据同步的问题分析: 当MySQL进行增删改查的时候,数据库的数据有所改变,这个时候需要修改es中的索引库的值,这个时候就涉及到了数据同步的问题 解决方法: 1、同步方法: 当服务对MySQL进行增删改的时候&…...

apt镜像源制作-ubuntu22.04
# 安装必要的软件 sudo apt-get install -y apt-mirror # 编辑/etc/apt/mirror.list,添加以下内容 set base_path /var/spool/apt-mirror # 指定要镜像的Ubuntu发布和组件-null dir jammy-updates main restricted universe multiverse # 镜像的Ubuntu发布和组件的URL-n…...

libaom 源码分析: 预测编码过程梳理
AV1 预测编码中核心技术 AV1(AOMedia Video 1)作为一种开源的视频编码格式,其预测编码核心技术主要包括以下几个方面: 分区树分割模块: AV1利用多类型分割模式,递归地对图像/视频序列进行分区,以捕捉更丰富的空间信息,从而提升编码效率。这包括新的方向预测分割模式及…...

从0开始学习Linux——Yum工具
往期目录: 从0开始学习Linux——简介&安装 从0开始学习Linux——搭建属于自己的Linux虚拟机 从0开始学习Linux——文本编辑器 上一个章节我们简单了解了Linux中常用的一些文本编辑器,本次教程我们将学习yum工具。 一、Yum简介 Yum(全名…...