当前位置: 首页 > news >正文

模糊理论与模糊集概述

1. 模糊集

1️⃣ μ A : U → [ 0 , 1 ] \mu_A:U\to{[0,1]} μA:U[0,1],将任意 u ∈ U u\in{}U uU映射到 [ 0 , 1 ] [0,1] [0,1]上的某个函数

  1. 模糊集: A = { μ A ( u ) , u ∈ U } A=\{\mu_A(u),u\in{}U\} A={μA(u),uU}称为 U U U上的一个模糊集,
  2. μ A \mu_A μA:定义在 U U U上的模糊集 A A A隶属函数
  3. μ A ( u ) \mu_A(u) μA(u) u u u对模糊集 A A A的隶属度

2️⃣离散论域 U U U的模糊集 A A A,以下表示中应剔除 μ A ( u i ) = 0 \mu_A(u_i)=0 μA(ui)=0

  1. 表示1: A = { μ A ( u 1 ) , μ A ( u 2 ) , . . . , μ A ( u n ) } A=\{\mu_A(u_1),\mu_A(u_2),...,\mu_A(u_n)\} A={μA(u1),μA(u2),...,μA(un)}
  2. 表示2: A = μ A ( u 1 ) / u 1 + μ A ( u 2 ) / u 2 + . . . + μ A ( u n ) / u n = ∑ i = 1 n μ A ( u i ) / u i A=\mu_A(u_1)/u_1+\mu_A(u_2)/u_2+...+\mu_A(u_n)/u_n= \sum\limits_{i=1}^{n} {\mu_A(u_i)}/{u_i} A=μA(u1)/u1+μA(u2)/u2+...+μA(un)/un=i=1nμA(ui)/ui
  3. 表示3: A = { μ A ( u 1 ) / u 1 , μ A ( u 2 ) / u 2 , . . . , μ A ( u n ) / u n } = ⋃ i = 1 n μ A ( u i ) / u i A=\{\mu_A(u_1)/u_1,\mu_A(u_2)/u_2,...,\mu_A(u_n)/u_n\}=\bigcup_{i=1}^{n} {\mu_A(u_i)}/{u_i} A={μA(u1)/u1,μA(u2)/u2,...,μA(un)/un}=i=1nμA(ui)/ui
  4. 表示4: A = { [ μ A ( u 1 ) , u 1 ] , [ μ A ( u 2 ) , u 2 ] , . . . , [ μ A ( u n ) , u n ] } A=\{[\mu_A(u_1),u_1],[\mu_A(u_2),u_2],...,[\mu_A(u_n),u_n]\} A={[μA(u1),u1],[μA(u2),u2],...,[μA(un),un]}

3️⃣连续论域 U U U的模糊集 A = ∫ u ∈ U μ A ( u ) / u A=\int\limits_{u\in{}U} {\mu_A(u)}/{u} A=uUμA(u)/u

4️⃣ U U U上所有模糊集表示为: F ( U ) = { A ∣ μ A : U → [ 0 , 1 ] } \mathcal{F}(U) = \{\mathcal{A} | \mu_{A} : U \to [0,1]\} F(U)={AμA:U[0,1]} F ( U ) = { μ A ∣ μ A : U → [ 0 , 1 ] } F(U) = \{\mu_{A} | \mu_{A} : U \to [0,1]\} F(U)={μAμA:U[0,1]}

2. 模糊集的运算

1️⃣ B B B包含于 A A A A , B ∈ F ( U ) , ∀ u ∈ U , μ B ( u ) ≤ μ A ( u ) → B ⊆ A A,B\in{}\mathcal{F}(U)\,,\forall{}u\in{}U\,,\mu_B(u)\leq{}\mu_A(u)\to{}B\subseteq{}A A,BF(U),uU,μB(u)μA(u)BA

2️⃣ A A A B B B的交并补:

  1. A ∪ B : μ A ∪ B ( u ) = max ⁡ { μ A ( u ) , μ B ( u ) } = μ A ( u ) ∨ μ B ( u ) A \cup B : \mu_{A \cup B}(u) = \max\{\mu_{A}(u), \mu_{B}(u)\} = \mu_{A}(u) \vee \mu_{B}(u) AB:μAB(u)=max{μA(u),μB(u)}=μA(u)μB(u)
    • 例如 μ A ( 1 ) = 0.3 / 1 , μ B ( u ) = 0.4 / 1 \mu_{A}(1)=0.3/1\,,\mu_{B}(u)=0.4/1 μA(1)=0.3/1,μB(u)=0.4/1 μ A ∪ B ( 1 ) = max ( 0.3 , 0.4 ) / 1 = 0.4 / 1 \mu_{A \cup B}(1)=\text{max}(0.3,0.4)/1=0.4/1 μAB(1)=max(0.3,0.4)/1=0.4/1
  2. A ∩ B : μ A ∩ B ( u ) = min ⁡ { μ A ( u ) , μ B ( u ) } = μ A ( u ) ∧ μ B ( u ) A \cap B : \mu_{A \cap B}(u) = \min\{\mu_{A}(u), \mu_{B}(u)\} = \mu_{A}(u) \wedge \mu_{B}(u) AB:μAB(u)=min{μA(u),μB(u)}=μA(u)μB(u)
  3. ¬ A : μ ¬ A ( u ) = 1 − μ A ( u ) \neg A : \mu_{\neg A}(u) = 1 - \mu_{A}(u) ¬A:μ¬A(u)=1μA(u)

3. 模糊关系

1️⃣笛卡尔乘积:了解即可

  1. A i A_i Ai U i U_i Ui上的模糊集
  2. A 1 A 2 . . . , A n A_1A_2...,A_n A1A2...,An的笛卡尔乘积:
    • A 1 × A 2 × ⋯ × A n = ∫ U 1 × U 2 × ⋯ × U n ( μ A 1 ( u 1 ) ∧ μ A 2 ( u 2 ) ∧ ⋯ ∧ μ A n ( u n ) ) d ( u 1 , u 2 , … , u n ) \displaystyle{}A_1 \times A_2 \times \cdots \times A_n = \int\limits_{U_1 \times U_2 \times \cdots \times U_n} (\mu_{A_1}(u_1) \wedge \mu_{A_2}(u_2) \wedge \cdots \wedge \mu_{A_n}(u_n)) \, d(u_1, u_2, \ldots, u_n) A1×A2××An=U1×U2××Un(μA1(u1)μA2(u2)μAn(un))d(u1,u2,,un)
  3. 笛卡尔乘积是 U 1 × U 2 × . . . × U n U_1\times{}U_2\times{}...\times{}U_n U1×U2×...×Un上的一个模糊集

2️⃣ n n n元模糊关系:了解即可

  1. 基于 U 1 × U 2 × . . . × U n U_1\times{}U_2\times{}...\times{}U_n U1×U2×...×Un论域
  2. R = ∫ U 1 × U 2 × ⋯ × U n μ R ( u 1 , u 2 , . . . , u n ) / ( u 1 , u 2 , … , u n ) R = \int\limits_{U_1 \times U_2 \times \cdots \times U_n} \mu_{R}(u_1,u_2,...,u_n)/(u_1, u_2, \ldots, u_n) R=U1×U2××UnμR(u1,u2,...,un)/(u1,u2,,un)
  3. 二元模糊关系:基于 U × V U\times{}V U×V,当二者都为有限论域时,模糊关系可表示为举证
    • 例如 U = V = { u 1 , u 2 , u 3 } U=V=\{u_1,u_2,u_3\} U=V={u1,u2,u3}表示信任关系则有:
      R = [ μ R ( u 1 , v 1 ) μ R ( u 1 , v 2 ) ⋯ μ R ( u 1 , v n ) μ R ( u 2 , v 1 ) μ R ( u 2 , v 2 ) ⋯ μ R ( u 2 , v n ) ⋮ ⋮ ⋱ ⋮ μ R ( u m , v 1 ) μ R ( u m , v 2 ) ⋯ μ R ( u m , v n ) ] → [ 1 0.3 0.8 0.9 1 0.6 0.7 0.5 1 ] R = \begin{bmatrix} \mu_R(u_{1}, v_{1}) & \mu_R(u_{1}, v_{2}) & \cdots & \mu_R(u_{1}, v_{n}) \\ \mu_R(u_{2}, v_{1}) & \mu_R(u_{2}, v_{2}) & \cdots & \mu_R(u_{2}, v_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mu_R(u_{m}, v_{1}) & \mu_R(u_{m}, v_{2}) & \cdots & \mu_R(u_{m}, v_{n}) \end{bmatrix} \quad \to \quad \left[ \begin{array}{ccc} 1 & 0.3 & 0.8 \\ 0.9 & 1 & 0.6 \\ 0.7 & 0.5 & 1 \\ \end{array} \right] R= μR(u1,v1)μR(u2,v1)μR(um,v1)μR(u1,v2)μR(u2,v2)μR(um,v2)μR(u1,vn)μR(u2,vn)μR(um,vn) 10.90.70.310.50.80.61

3️⃣模糊关系的合成

  1. R 1 , R 2 R_1,R_2 R1,R2分别是 U × V , V × W U\times{}V,V\times{}W U×V,V×W的模糊关系,其合成即为 R 1 ∘ R 2 R_1\circ{}R_2 R1R2
  2. μ R 1 ∘ R 2 ( u , w ) = ⋁ v ∈ V { μ R 1 ( u , v ) ∧ μ R 2 ( v , w ) } \displaystyle{}\mu_{R_1 \circ R_2}(u, w) = \bigvee_{v \in V} \{ \mu_{R_1}(u, v) \wedge \mu_{R_2}(v, w) \} μR1R2(u,w)=vV{μR1(u,v)μR2(v,w)}
  3. 示例:
    image-20231124004226145

4. 模糊逻辑

1️⃣含义:含有模糊概念、模糊数据的语句

2️⃣形式:x_is_A A A A是模糊概念(模糊集);比如张三 is 如存在的

5. 模糊匹配

1️⃣形式:IF (x_is_A) THEN (y_is_B) ,证据和结论都用模糊命题表示, A B AB AB是模糊概念

2️⃣核心问题:条件的 A A A与证据的 A ′ A' A不一定完全相同,例如

IF x_is_小(知识) THEN y_is_大(结论)
x_is_微(证据)

3️⃣匹配度:计算两个模糊概念(集)之间的相似程度:计算题重灾区

  1. 海明距离: { d ( A , B ) = 1 n × ∑ i = 1 n ∣ μ A ( u i ) − μ B ( u i ) ∣ d ( A , B ) = 1 b − a ∫ a b ∣ μ A ( u ) − μ B ( u ) ∣ d u \displaystyle{}\begin{cases} \displaystyle{}d(A, B) = \cfrac{1}{n} \times \sum\limits_{i=1}^{n} |\mu_A(u_i) - \mu_B(u_i)|\\\displaystyle{}d(A, B) = \cfrac{1}{b-a} \int_{a}^{b} |\mu_A(u) - \mu_B(u)| du \end{cases} d(A,B)=n1×i=1nμA(ui)μB(ui)d(A,B)=ba1abμA(u)μB(u)du
  2. 欧几里得距离: d ( A , B ) = 1 n × ∑ i = 1 n ( μ A ( u i ) − μ B ( u i ) ) 2 \displaystyle{}d(A, B) = \sqrt{\frac{1}{n} \times \sum\limits_{i=1}^{n} (\mu_A(u_i) - \mu_B(u_i))^2} d(A,B)=n1×i=1n(μA(ui)μB(ui))2

4️⃣复合条件的模糊匹配

  1. 条件:E= x1_is_A1 AND x2_is_A2 AND...AND xn_is_An
  2. 证据:x1_is_A1',x2_is_A2',...,xn_is_An',匹配度 δ m a t c h ( A i , A i ′ ) i = 1 , 2 , . . . , n \delta_{match}(A_i,A_i')\,i=1,2,...,n δmatch(AiAi)i=1,2,...,n
  3. 整个条件与证据的匹配度
    • δ m a t c h ( E , E ′ ) = m i n { δ m a t c h ( A i , A i ′ ) i = 1 , 2 , . . . , n } \delta_{match}(E,E')=min\{\delta_{match}(A_i,A_i')\,i=1,2,...,n\} δmatch(E,E)=min{δmatch(Ai,Ai)i=1,2,...,n}
    • δ m a t c h ( E , E ′ ) = ∏ i = 1 n δ m a t c h ( A i , A i ′ ) \delta_{match}(E,E')=\prod\limits_{i=1}^{n}\delta{}_{match}(A_i,A_i') δmatch(E,E)=i=1nδmatch(Ai,Ai)

6. 模糊推理的基本模式

1️⃣模糊假言推理

知识:IF  x_is_A  THEN  y_is_B
证据:    x_is_A'
结论:                  y_is_B'

2️⃣模糊拒取式推理

知识:IF  x_is_A  THEN  y_is_B
证据:                  y_is_B'
结论:    x_is_A'            

3️⃣模糊推理方法(扎德):由IF (x_is_A) THEN (y_is_B) 求出 A B AB AB之间的模糊关系 R R R,通过 R R R与相应证据合成求出模糊结论

相关文章:

模糊理论与模糊集概述

1. 模糊集 1️⃣ μ A : U → [ 0 , 1 ] \mu_A:U\to{[0,1]} μA​:U→[0,1],将任意 u ∈ U u\in{}U u∈U映射到 [ 0 , 1 ] [0,1] [0,1]上的某个函数 模糊集: A { μ A ( u ) , u ∈ U } A\{\mu_A(u),u\in{}U\} A{μA​(u),u∈U}称为 U U U上的一个模糊集…...

基于STM32的实时时钟(RTC)教学

引言 实时时钟(RTC)是微控制器中的一种重要功能,能够持续跟踪当前时间和日期。在许多应用中,RTC用于记录时间戳、定时操作等。本文将指导您如何使用STM32开发板实现RTC功能,通过示例代码实现当前时间的读取和显示。 环…...

Caffeine Cache解析(三):BoundedBuffer 与 MpscGrowableArrayQueue 源码浅析

接续 Caffeine Cache解析(一):接口设计与TinyLFU 接续 Caffeine Cache解析(二):drainStatus多线程状态流转 BoundedBuffer 与 MpscGrowableArrayQueue multiple-producer / single-consumer 这里multiple和single指的是并发数量 BoundedBuffer: Caf…...

全双工通信协议WebSocket——使用WebSocket实现智能学习助手/聊天室功能

一.什么是WebSocket? WebSocket是基于TCP的一种新的网络协议。它实现了浏览器与服务器的全双工通信——浏览器和服务器只需要完成一次握手,两者之间就可以创建持久性的连接,并进行双向数据传输 HTTP 协议是一种无状态的、无连接的、单向的应用…...

Rust-Trait 特征编程

昨夜江边春水生,艨艟巨舰一毛轻。 向来枉费推移力,此日中流自在行。 ——《活水亭观书有感二首其二》宋朱熹 【哲理】往日舟大水浅,众人使劲推船,也是白费力气,而此时春水猛涨,巨舰却自由自在地飘行在水流中…...

彻底理解哈希表(HashTable)结构

目录 介绍优缺点概念哈希函数快速的计算键类型键转索引霍纳法则 均匀的分布 哈希冲突链地址法开放地址法线性探测二次探测再哈希法 扩容/缩容实现哈希创建哈希表质数判断哈希函数插入&修改获取数据删除数据扩容/缩容函数全部代码 哈希表(Hash Table)…...

微信小程序的汽车维修预约管理系统

文章目录 项目介绍具体实现截图技术介绍mvc设计模式小程序框架以及目录结构介绍错误处理和异常处理java类核心代码部分展示详细视频演示源码获取 项目介绍 系统功能简述 前台用于实现用户在页面上的各种操作,同时在个人中心显示各种操作所产生的记录:后…...

LeetCode:3255. 长度为 K 的子数组的能量值 II(模拟 Java)

目录 3255. 长度为 K 的子数组的能量值 II 题目描述: 实现代码与解析: 模拟 原理思路: 3255. 长度为 K 的子数组的能量值 II 题目描述: 给你一个长度为 n 的整数数组 nums 和一个正整数 k 。 一个数组的 能量值 定义为&am…...

深入了解逻辑回归:机器学习中的经典算法

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

软件测试基础十三(python 函数)

函数 1. 函数的意义 代码复用 提高效率:Python中的函数允许将一段可重复使用的代码封装起来。例如,在一个数据分析项目中,可能需要多次计算一组数据的平均值。可以将计算平均值的代码定义为一个函数: def calculate_average(nu…...

计算机网络——HTTP篇

基础篇 IOS七层网络模型 TCP/IP四层模型? 应⽤层:位于传输层之上,主要提供两个终端设备上的应⽤程序之间的通信,它定义了信息交换的格式,消息会交给下⼀层传输层来传输。 传输层的主要任务就是负责向两台设备进程之间…...

信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)

1 编制目的 2 系统运行维护 2.1 系统运维内容 2.2 日常运行维护方案 2.2.1 日常巡检 2.2.2 状态监控 2.2.3 系统优化 2.2.4 软件系统问题处理及升级 2.2.5 系统数据库管理维护 2.2.6 灾难恢复 2.3 应急运行维护方案 2.3.1 启动应急流程 2.3.2 成立应急小组 2.3.3 应急处理过程 …...

自动化工具 Gulp

自动化工具 gulp 摘要 概念:gulp用于自动化开发流程。 理解:我们只需要编写任务,然后gulp帮我们执行 核心概念: 任务:通过定义不同的任务来组织你的构建流程。 管道:通过管道方式将文件从一个插件传递…...

css实现div被图片撑开

固定好盒子的宽度&#xff0c;高度随传过来的图片大小决定 <div class"tab-con"> <img:src"concertInfo.detail"alt""> </div>.tab-con {margin-bottom: 20px;width: 700px;img {width: 700px;height: auto;object-fit: cont…...

Power Pivot、Power BI 和 SQL Server Analysis Services 的公式语言:DAX(数据分析表达式)

DAX&#xff08;Data Analysis Expressions&#xff09;是一种用于 Power Pivot、Power BI 和 SQL Server Analysis Services 的公式语言&#xff0c;旨在帮助用户进行数据建模和复杂计算。DAX 的设计初衷是使数据分析变得简单而高效&#xff0c;特别是在处理数据模型中的表关系…...

大模型应用编排工具Dify二开之工具和模型页面改造

1.前言 简要介绍下 dify&#xff1a; ​ 一款可以对接市面上主流大模型的任务编排工具&#xff0c;可以通过拖拽形式进行编排形成解决某些业务场景的大模型应用。 背景信息&#xff1a; ​ 环境&#xff1a;dify-0.8.3、docker-21 ​ 最近笔者在做 dify的私有化部署和二次…...

Pytorch用BERT对CoLA、新闻组文本数据集自然语言处理NLP:主题分类建模微调可视化分析...

原文链接&#xff1a;https://tecdat.cn/?p38181 自然语言处理&#xff08;NLP&#xff09;领域在近年来发展迅猛&#xff0c;尤其是预训练模型的出现带来了重大变革。其中&#xff0c;BERT 模型凭借其卓越性能备受瞩目。然而&#xff0c;对于许多研究者而言&#xff0c;如何高…...

LightGBM-GPU不能装在WSL,能装在windows上

这是一篇经验总结文章&#xff0c;注重思路&#xff0c;忽略细节。 1.起因 用多个机器学习方法训练模型&#xff0c;比较性能&#xff0c;发现Light GBM方法获得的性能明显更高&#xff0c;但问题是在CPU上训练的速度特别特别慢&#xff0c;需要用GPU训练。 2.开始装LightGB…...

工业相机常用功能之白平衡及C++代码分享

目录 1、白平衡的概念解析 2、相机白平衡参数及操作 2.1 相机白平衡参数 2.2 自动白平衡操作 2.3 手动白平衡操作流程 3、C++ 代码从XML读取参数及设置相机参数 3.1 读取XML 3.2 C++代码,从XML读取参数 3.3 给相机设置参数 1、白平衡的概念解析 白平衡(White Balance)…...

Foundry 单元测试

安装 Foundry 如果你还没有安装 Foundry&#xff0c;请按照此处的说明进行操作&#xff1a;Foundry 安装 Foundry Hello World 只需运行以下命令&#xff0c;它将为你设置环境&#xff0c;创建测试并运行它们。&#xff08;当然&#xff0c;这假设你已经安装了 Foundry&…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...