模糊理论与模糊集概述
1. 模糊集
1️⃣ μ A : U → [ 0 , 1 ] \mu_A:U\to{[0,1]} μA:U→[0,1],将任意 u ∈ U u\in{}U u∈U映射到 [ 0 , 1 ] [0,1] [0,1]上的某个函数
- 模糊集: A = { μ A ( u ) , u ∈ U } A=\{\mu_A(u),u\in{}U\} A={μA(u),u∈U}称为 U U U上的一个模糊集,
- μ A \mu_A μA:定义在 U U U上的模糊集 A A A的隶属函数
- μ A ( u ) \mu_A(u) μA(u): u u u对模糊集 A A A的隶属度
2️⃣离散论域 U U U的模糊集 A A A,以下表示中应剔除 μ A ( u i ) = 0 \mu_A(u_i)=0 μA(ui)=0的
- 表示1: A = { μ A ( u 1 ) , μ A ( u 2 ) , . . . , μ A ( u n ) } A=\{\mu_A(u_1),\mu_A(u_2),...,\mu_A(u_n)\} A={μA(u1),μA(u2),...,μA(un)}
- 表示2: A = μ A ( u 1 ) / u 1 + μ A ( u 2 ) / u 2 + . . . + μ A ( u n ) / u n = ∑ i = 1 n μ A ( u i ) / u i A=\mu_A(u_1)/u_1+\mu_A(u_2)/u_2+...+\mu_A(u_n)/u_n= \sum\limits_{i=1}^{n} {\mu_A(u_i)}/{u_i} A=μA(u1)/u1+μA(u2)/u2+...+μA(un)/un=i=1∑nμA(ui)/ui
- 表示3: A = { μ A ( u 1 ) / u 1 , μ A ( u 2 ) / u 2 , . . . , μ A ( u n ) / u n } = ⋃ i = 1 n μ A ( u i ) / u i A=\{\mu_A(u_1)/u_1,\mu_A(u_2)/u_2,...,\mu_A(u_n)/u_n\}=\bigcup_{i=1}^{n} {\mu_A(u_i)}/{u_i} A={μA(u1)/u1,μA(u2)/u2,...,μA(un)/un}=⋃i=1nμA(ui)/ui
- 表示4: A = { [ μ A ( u 1 ) , u 1 ] , [ μ A ( u 2 ) , u 2 ] , . . . , [ μ A ( u n ) , u n ] } A=\{[\mu_A(u_1),u_1],[\mu_A(u_2),u_2],...,[\mu_A(u_n),u_n]\} A={[μA(u1),u1],[μA(u2),u2],...,[μA(un),un]}
3️⃣连续论域 U U U的模糊集 A = ∫ u ∈ U μ A ( u ) / u A=\int\limits_{u\in{}U} {\mu_A(u)}/{u} A=u∈U∫μA(u)/u
4️⃣ U U U上所有模糊集表示为: F ( U ) = { A ∣ μ A : U → [ 0 , 1 ] } \mathcal{F}(U) = \{\mathcal{A} | \mu_{A} : U \to [0,1]\} F(U)={A∣μA:U→[0,1]}或 F ( U ) = { μ A ∣ μ A : U → [ 0 , 1 ] } F(U) = \{\mu_{A} | \mu_{A} : U \to [0,1]\} F(U)={μA∣μA:U→[0,1]}
2. 模糊集的运算
1️⃣ B B B包含于 A A A: A , B ∈ F ( U ) , ∀ u ∈ U , μ B ( u ) ≤ μ A ( u ) → B ⊆ A A,B\in{}\mathcal{F}(U)\,,\forall{}u\in{}U\,,\mu_B(u)\leq{}\mu_A(u)\to{}B\subseteq{}A A,B∈F(U),∀u∈U,μB(u)≤μA(u)→B⊆A
2️⃣ A A A, B B B的交并补:
- A ∪ B : μ A ∪ B ( u ) = max { μ A ( u ) , μ B ( u ) } = μ A ( u ) ∨ μ B ( u ) A \cup B : \mu_{A \cup B}(u) = \max\{\mu_{A}(u), \mu_{B}(u)\} = \mu_{A}(u) \vee \mu_{B}(u) A∪B:μA∪B(u)=max{μA(u),μB(u)}=μA(u)∨μB(u)
- 例如 μ A ( 1 ) = 0.3 / 1 , μ B ( u ) = 0.4 / 1 \mu_{A}(1)=0.3/1\,,\mu_{B}(u)=0.4/1 μA(1)=0.3/1,μB(u)=0.4/1则 μ A ∪ B ( 1 ) = max ( 0.3 , 0.4 ) / 1 = 0.4 / 1 \mu_{A \cup B}(1)=\text{max}(0.3,0.4)/1=0.4/1 μA∪B(1)=max(0.3,0.4)/1=0.4/1
- A ∩ B : μ A ∩ B ( u ) = min { μ A ( u ) , μ B ( u ) } = μ A ( u ) ∧ μ B ( u ) A \cap B : \mu_{A \cap B}(u) = \min\{\mu_{A}(u), \mu_{B}(u)\} = \mu_{A}(u) \wedge \mu_{B}(u) A∩B:μA∩B(u)=min{μA(u),μB(u)}=μA(u)∧μB(u)
- ¬ A : μ ¬ A ( u ) = 1 − μ A ( u ) \neg A : \mu_{\neg A}(u) = 1 - \mu_{A}(u) ¬A:μ¬A(u)=1−μA(u)
3. 模糊关系
1️⃣笛卡尔乘积:了解即可
- A i A_i Ai是 U i U_i Ui上的模糊集
- A 1 A 2 . . . , A n A_1A_2...,A_n A1A2...,An的笛卡尔乘积:
- A 1 × A 2 × ⋯ × A n = ∫ U 1 × U 2 × ⋯ × U n ( μ A 1 ( u 1 ) ∧ μ A 2 ( u 2 ) ∧ ⋯ ∧ μ A n ( u n ) ) d ( u 1 , u 2 , … , u n ) \displaystyle{}A_1 \times A_2 \times \cdots \times A_n = \int\limits_{U_1 \times U_2 \times \cdots \times U_n} (\mu_{A_1}(u_1) \wedge \mu_{A_2}(u_2) \wedge \cdots \wedge \mu_{A_n}(u_n)) \, d(u_1, u_2, \ldots, u_n) A1×A2×⋯×An=U1×U2×⋯×Un∫(μA1(u1)∧μA2(u2)∧⋯∧μAn(un))d(u1,u2,…,un)
- 笛卡尔乘积是 U 1 × U 2 × . . . × U n U_1\times{}U_2\times{}...\times{}U_n U1×U2×...×Un上的一个模糊集
2️⃣ n n n元模糊关系:了解即可
- 基于 U 1 × U 2 × . . . × U n U_1\times{}U_2\times{}...\times{}U_n U1×U2×...×Un论域
- R = ∫ U 1 × U 2 × ⋯ × U n μ R ( u 1 , u 2 , . . . , u n ) / ( u 1 , u 2 , … , u n ) R = \int\limits_{U_1 \times U_2 \times \cdots \times U_n} \mu_{R}(u_1,u_2,...,u_n)/(u_1, u_2, \ldots, u_n) R=U1×U2×⋯×Un∫μR(u1,u2,...,un)/(u1,u2,…,un)
- 二元模糊关系:基于 U × V U\times{}V U×V,当二者都为有限论域时,模糊关系可表示为举证
- 例如 U = V = { u 1 , u 2 , u 3 } U=V=\{u_1,u_2,u_3\} U=V={u1,u2,u3}表示信任关系则有:
R = [ μ R ( u 1 , v 1 ) μ R ( u 1 , v 2 ) ⋯ μ R ( u 1 , v n ) μ R ( u 2 , v 1 ) μ R ( u 2 , v 2 ) ⋯ μ R ( u 2 , v n ) ⋮ ⋮ ⋱ ⋮ μ R ( u m , v 1 ) μ R ( u m , v 2 ) ⋯ μ R ( u m , v n ) ] → [ 1 0.3 0.8 0.9 1 0.6 0.7 0.5 1 ] R = \begin{bmatrix} \mu_R(u_{1}, v_{1}) & \mu_R(u_{1}, v_{2}) & \cdots & \mu_R(u_{1}, v_{n}) \\ \mu_R(u_{2}, v_{1}) & \mu_R(u_{2}, v_{2}) & \cdots & \mu_R(u_{2}, v_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mu_R(u_{m}, v_{1}) & \mu_R(u_{m}, v_{2}) & \cdots & \mu_R(u_{m}, v_{n}) \end{bmatrix} \quad \to \quad \left[ \begin{array}{ccc} 1 & 0.3 & 0.8 \\ 0.9 & 1 & 0.6 \\ 0.7 & 0.5 & 1 \\ \end{array} \right] R= μR(u1,v1)μR(u2,v1)⋮μR(um,v1)μR(u1,v2)μR(u2,v2)⋮μR(um,v2)⋯⋯⋱⋯μR(u1,vn)μR(u2,vn)⋮μR(um,vn) → 10.90.70.310.50.80.61 3️⃣模糊关系的合成
- R 1 , R 2 R_1,R_2 R1,R2分别是 U × V , V × W U\times{}V,V\times{}W U×V,V×W的模糊关系,其合成即为 R 1 ∘ R 2 R_1\circ{}R_2 R1∘R2
- μ R 1 ∘ R 2 ( u , w ) = ⋁ v ∈ V { μ R 1 ( u , v ) ∧ μ R 2 ( v , w ) } \displaystyle{}\mu_{R_1 \circ R_2}(u, w) = \bigvee_{v \in V} \{ \mu_{R_1}(u, v) \wedge \mu_{R_2}(v, w) \} μR1∘R2(u,w)=v∈V⋁{μR1(u,v)∧μR2(v,w)}
- 示例:
4. 模糊逻辑
1️⃣含义:含有模糊概念、模糊数据的语句
2️⃣形式:
x_is_A, A A A是模糊概念(模糊集);比如张三 is 如存在的
5. 模糊匹配
1️⃣形式:
IF (x_is_A) THEN (y_is_B),证据和结论都用模糊命题表示, A B AB AB是模糊概念2️⃣核心问题:条件的 A A A与证据的 A ′ A' A′不一定完全相同,例如
IF x_is_小(知识) THEN y_is_大(结论) x_is_微(证据)3️⃣匹配度:计算两个模糊概念(集)之间的相似程度:计算题重灾区
- 海明距离: { d ( A , B ) = 1 n × ∑ i = 1 n ∣ μ A ( u i ) − μ B ( u i ) ∣ d ( A , B ) = 1 b − a ∫ a b ∣ μ A ( u ) − μ B ( u ) ∣ d u \displaystyle{}\begin{cases} \displaystyle{}d(A, B) = \cfrac{1}{n} \times \sum\limits_{i=1}^{n} |\mu_A(u_i) - \mu_B(u_i)|\\\displaystyle{}d(A, B) = \cfrac{1}{b-a} \int_{a}^{b} |\mu_A(u) - \mu_B(u)| du \end{cases} ⎩ ⎨ ⎧d(A,B)=n1×i=1∑n∣μA(ui)−μB(ui)∣d(A,B)=b−a1∫ab∣μA(u)−μB(u)∣du
- 欧几里得距离: d ( A , B ) = 1 n × ∑ i = 1 n ( μ A ( u i ) − μ B ( u i ) ) 2 \displaystyle{}d(A, B) = \sqrt{\frac{1}{n} \times \sum\limits_{i=1}^{n} (\mu_A(u_i) - \mu_B(u_i))^2} d(A,B)=n1×i=1∑n(μA(ui)−μB(ui))2
4️⃣复合条件的模糊匹配
- 条件:
E= x1_is_A1 AND x2_is_A2 AND...AND xn_is_An- 证据:
x1_is_A1',x2_is_A2',...,xn_is_An',匹配度 δ m a t c h ( A i , A i ′ ) i = 1 , 2 , . . . , n \delta_{match}(A_i,A_i')\,i=1,2,...,n δmatch(Ai,Ai′)i=1,2,...,n- 整个条件与证据的匹配度
- δ m a t c h ( E , E ′ ) = m i n { δ m a t c h ( A i , A i ′ ) i = 1 , 2 , . . . , n } \delta_{match}(E,E')=min\{\delta_{match}(A_i,A_i')\,i=1,2,...,n\} δmatch(E,E′)=min{δmatch(Ai,Ai′)i=1,2,...,n}
- δ m a t c h ( E , E ′ ) = ∏ i = 1 n δ m a t c h ( A i , A i ′ ) \delta_{match}(E,E')=\prod\limits_{i=1}^{n}\delta{}_{match}(A_i,A_i') δmatch(E,E′)=i=1∏nδmatch(Ai,Ai′)
6. 模糊推理的基本模式
1️⃣模糊假言推理
知识:IF x_is_A THEN y_is_B 证据: x_is_A' 结论: y_is_B'2️⃣模糊拒取式推理
知识:IF x_is_A THEN y_is_B 证据: y_is_B' 结论: x_is_A'3️⃣模糊推理方法(扎德):由
IF (x_is_A) THEN (y_is_B)求出 A B AB AB之间的模糊关系 R R R,通过 R R R与相应证据合成求出模糊结论
相关文章:
模糊理论与模糊集概述
1. 模糊集 1️⃣ μ A : U → [ 0 , 1 ] \mu_A:U\to{[0,1]} μA:U→[0,1],将任意 u ∈ U u\in{}U u∈U映射到 [ 0 , 1 ] [0,1] [0,1]上的某个函数 模糊集: A { μ A ( u ) , u ∈ U } A\{\mu_A(u),u\in{}U\} A{μA(u),u∈U}称为 U U U上的一个模糊集…...
基于STM32的实时时钟(RTC)教学
引言 实时时钟(RTC)是微控制器中的一种重要功能,能够持续跟踪当前时间和日期。在许多应用中,RTC用于记录时间戳、定时操作等。本文将指导您如何使用STM32开发板实现RTC功能,通过示例代码实现当前时间的读取和显示。 环…...
Caffeine Cache解析(三):BoundedBuffer 与 MpscGrowableArrayQueue 源码浅析
接续 Caffeine Cache解析(一):接口设计与TinyLFU 接续 Caffeine Cache解析(二):drainStatus多线程状态流转 BoundedBuffer 与 MpscGrowableArrayQueue multiple-producer / single-consumer 这里multiple和single指的是并发数量 BoundedBuffer: Caf…...
全双工通信协议WebSocket——使用WebSocket实现智能学习助手/聊天室功能
一.什么是WebSocket? WebSocket是基于TCP的一种新的网络协议。它实现了浏览器与服务器的全双工通信——浏览器和服务器只需要完成一次握手,两者之间就可以创建持久性的连接,并进行双向数据传输 HTTP 协议是一种无状态的、无连接的、单向的应用…...
Rust-Trait 特征编程
昨夜江边春水生,艨艟巨舰一毛轻。 向来枉费推移力,此日中流自在行。 ——《活水亭观书有感二首其二》宋朱熹 【哲理】往日舟大水浅,众人使劲推船,也是白费力气,而此时春水猛涨,巨舰却自由自在地飘行在水流中…...
彻底理解哈希表(HashTable)结构
目录 介绍优缺点概念哈希函数快速的计算键类型键转索引霍纳法则 均匀的分布 哈希冲突链地址法开放地址法线性探测二次探测再哈希法 扩容/缩容实现哈希创建哈希表质数判断哈希函数插入&修改获取数据删除数据扩容/缩容函数全部代码 哈希表(Hash Table)…...
微信小程序的汽车维修预约管理系统
文章目录 项目介绍具体实现截图技术介绍mvc设计模式小程序框架以及目录结构介绍错误处理和异常处理java类核心代码部分展示详细视频演示源码获取 项目介绍 系统功能简述 前台用于实现用户在页面上的各种操作,同时在个人中心显示各种操作所产生的记录:后…...
LeetCode:3255. 长度为 K 的子数组的能量值 II(模拟 Java)
目录 3255. 长度为 K 的子数组的能量值 II 题目描述: 实现代码与解析: 模拟 原理思路: 3255. 长度为 K 的子数组的能量值 II 题目描述: 给你一个长度为 n 的整数数组 nums 和一个正整数 k 。 一个数组的 能量值 定义为&am…...
深入了解逻辑回归:机器学习中的经典算法
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
软件测试基础十三(python 函数)
函数 1. 函数的意义 代码复用 提高效率:Python中的函数允许将一段可重复使用的代码封装起来。例如,在一个数据分析项目中,可能需要多次计算一组数据的平均值。可以将计算平均值的代码定义为一个函数: def calculate_average(nu…...
计算机网络——HTTP篇
基础篇 IOS七层网络模型 TCP/IP四层模型? 应⽤层:位于传输层之上,主要提供两个终端设备上的应⽤程序之间的通信,它定义了信息交换的格式,消息会交给下⼀层传输层来传输。 传输层的主要任务就是负责向两台设备进程之间…...
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
1 编制目的 2 系统运行维护 2.1 系统运维内容 2.2 日常运行维护方案 2.2.1 日常巡检 2.2.2 状态监控 2.2.3 系统优化 2.2.4 软件系统问题处理及升级 2.2.5 系统数据库管理维护 2.2.6 灾难恢复 2.3 应急运行维护方案 2.3.1 启动应急流程 2.3.2 成立应急小组 2.3.3 应急处理过程 …...
自动化工具 Gulp
自动化工具 gulp 摘要 概念:gulp用于自动化开发流程。 理解:我们只需要编写任务,然后gulp帮我们执行 核心概念: 任务:通过定义不同的任务来组织你的构建流程。 管道:通过管道方式将文件从一个插件传递…...
css实现div被图片撑开
固定好盒子的宽度,高度随传过来的图片大小决定 <div class"tab-con"> <img:src"concertInfo.detail"alt""> </div>.tab-con {margin-bottom: 20px;width: 700px;img {width: 700px;height: auto;object-fit: cont…...
Power Pivot、Power BI 和 SQL Server Analysis Services 的公式语言:DAX(数据分析表达式)
DAX(Data Analysis Expressions)是一种用于 Power Pivot、Power BI 和 SQL Server Analysis Services 的公式语言,旨在帮助用户进行数据建模和复杂计算。DAX 的设计初衷是使数据分析变得简单而高效,特别是在处理数据模型中的表关系…...
大模型应用编排工具Dify二开之工具和模型页面改造
1.前言 简要介绍下 dify: 一款可以对接市面上主流大模型的任务编排工具,可以通过拖拽形式进行编排形成解决某些业务场景的大模型应用。 背景信息: 环境:dify-0.8.3、docker-21 最近笔者在做 dify的私有化部署和二次…...
Pytorch用BERT对CoLA、新闻组文本数据集自然语言处理NLP:主题分类建模微调可视化分析...
原文链接:https://tecdat.cn/?p38181 自然语言处理(NLP)领域在近年来发展迅猛,尤其是预训练模型的出现带来了重大变革。其中,BERT 模型凭借其卓越性能备受瞩目。然而,对于许多研究者而言,如何高…...
LightGBM-GPU不能装在WSL,能装在windows上
这是一篇经验总结文章,注重思路,忽略细节。 1.起因 用多个机器学习方法训练模型,比较性能,发现Light GBM方法获得的性能明显更高,但问题是在CPU上训练的速度特别特别慢,需要用GPU训练。 2.开始装LightGB…...
工业相机常用功能之白平衡及C++代码分享
目录 1、白平衡的概念解析 2、相机白平衡参数及操作 2.1 相机白平衡参数 2.2 自动白平衡操作 2.3 手动白平衡操作流程 3、C++ 代码从XML读取参数及设置相机参数 3.1 读取XML 3.2 C++代码,从XML读取参数 3.3 给相机设置参数 1、白平衡的概念解析 白平衡(White Balance)…...
Foundry 单元测试
安装 Foundry 如果你还没有安装 Foundry,请按照此处的说明进行操作:Foundry 安装 Foundry Hello World 只需运行以下命令,它将为你设置环境,创建测试并运行它们。(当然,这假设你已经安装了 Foundry&…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
