RNA-seq 差异分析的点点滴滴(1)

引言
本系列[1])将开展全新的转录组分析专栏,主要针对使用DESeq2
时可能出现的问题和方法进行展开。
为何使用未经标准化的计数数据?
DESeq2
工具包在接收输入时,期望得到的是未经处理的原始计数数据,比如从 RNA-seq 或其他高通量测序实验中获得的,这些数据以整数值矩阵的形式呈现。在这个矩阵中,第 i 行第 j 列的数值表示在样本 j 中可以归属于基因 i 的读段数。同样地,对于其他类型的实验,矩阵的行可能代表结合区域(例如 ChIP-Seq 实验)或肽序列(例如定量质谱实验)。
矩阵中的数值应当是未经标准化的读段计数(对于单端 RNA-seq)或片段计数(对于双端 RNA-seq)。RNA-seq 的工作流程中描述了多种制备此类计数矩阵的技术。为 DESeq2
的统计模型提供计数矩阵作为输入非常关键,因为只有原始的计数数据才能准确评估测量的精确度。DESeq2
模型在内部会校正文库大小的影响,因此不应该使用经过转换或标准化的数值,比如按文库大小调整后的计数,作为输入数据。
DESeqDataSet 对象
在 DESeq2
工具包中,用于存储读取计数和统计分析过程中的中间估计量的类对象是 DESeqDataSet
,通常在代码中以 dds 表示。
技术细节上,DESeqDataSet 类扩展了 SummarizedExperiment 包中的 RangedSummarizedExperiment 类。“Ranged” 指的是测定数据的行(即计数)可以与基因组的特定区域(如基因的外显子)相关联。
DESeqDataSet 对象必须关联一个设计公式。这个公式描述了将在模型中使用的变量,通常以波浪号 (~) 开始,后跟用加号 (+) 分隔的变量(如果不是公式形式,系统会自动转换)。设计公式可以在后续更改,但需要重新执行所有差异分析步骤,因为设计公式用于估计离散度和模型的 log2 倍数变化。
注意:为了利用包的默认设置,应将感兴趣的变量放在公式的末尾,并确保对照组水平是第一水平。
接下来,将展示根据在 DESeq2 之前使用的管道不同,构建 DESeqDataSet 的四种方法:
-
从转录丰度文件和 tximport 生成 -
从计数矩阵生成 -
从 htseq-count 文件生成 -
从 SummarizedExperiment 对象生成
转录本丰度数据
建议在使用 DESeq2 之前,先采用快速的转录本丰度定量工具,然后通过 tximport导入这些定量数据来创建 DESeq2 所需的基因水平计数矩阵。这种方法允许用户从多种外部软件中导入转录本丰度估计值,包括以下方法:Salmon; Sailfish; kallisto ;RSEM
采用上述方法进行转录本丰度估计的好处包括:(i)这种方法能够校正样本间可能的基因长度变化(例如,由于异构体的不同使用),(ii)其中一些方法(Salmon, Sailfish, kallisto)相比需要创建和存储 BAM 文件的基于比对的方法,速度显著更快,且对内存和磁盘空间的需求更少,以及(iii)可以避免丢弃那些能够与多个具有同源序列的基因对齐的片段,从而提高检测的灵敏度。
请注意,tximport-to-DESeq2 方法使用的是转录本丰度定量器估计的基因计数,而不是标准化计数。
在这里,将展示如何从存储在 tximportData 包中的 Salmon quant.sf 文件导入转录本丰度,并构建一个基因水平的 DESeqDataSet 对象。
library("tximport")
library("readr")
library("tximportData")
dir <- system.file("extdata", package="tximportData")
samples <- read.table(file.path(dir,"samples.txt"), header=TRUE)
samples$condition <- factor(rep(c("A","B"),each=3))
rownames(samples) <- samples$run
samples[,c("pop","center","run","condition")]
## pop center run condition
## ERR188297 TSI UNIGE ERR188297 A
## ERR188088 TSI UNIGE ERR188088 A
## ERR188329 TSI UNIGE ERR188329 A
## ERR188288 TSI UNIGE ERR188288 B
## ERR188021 TSI UNIGE ERR188021 B
## ERR188356 TSI UNIGE ERR188356 B
接下来,使用适当的样本列指定文件的路径,并读取一个将转录本与该数据集的基因链接起来的表。
files <- file.path(dir,"salmon", samples$run, "quant.sf.gz")
names(files) <- samples$run
tx2gene <- read_csv(file.path(dir, "tx2gene.gencode.v27.csv"))
使用 tximport 函数导入 DESeq2 所需的量化数据。
txi <- tximport(files, type="salmon", tx2gene=tx2gene)
最后,可以根据样本中的 txi 对象和样本信息构造一个 DESeqDataSet。
library("DESeq2")
ddsTxi <- DESeqDataSetFromTximport(txi,
colData = samples,
design = ~ condition)
这里的ddsTxi对象就可以在下面的分析步骤中用作dds。
Source: https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
本文由 mdnice 多平台发布
相关文章:

RNA-seq 差异分析的点点滴滴(1)
引言 本系列[1])将开展全新的转录组分析专栏,主要针对使用DESeq2时可能出现的问题和方法进行展开。 为何使用未经标准化的计数数据? DESeq2 工具包在接收输入时,期望得到的是未经处理的原始计数数据,比如从 RNA-seq 或其他高通量测…...

Windows10/11开启卓越性能模式 windows开启卓越性能电源模式 工作电脑开启卓越性能模式 电脑开启性能模式
Windows10/11开启卓越性能模式 windows开启卓越性能电源模式 工作电脑开启卓越性能模式 电脑开启性能模式 1、所要用到的激活工具2、开启电脑卓越性能模式Windows11Windows10在电源模式中选择卓越性能模式 3、将系统版本切换为 工作站版本 1、所要用到的激活工具 KMS激活工具(…...

day20-21之间的项目实战:若依ruoyi开发(可以跳过)
一,项目概述 官网文档地址:http://doc.ruoyi.vip/ rouyi是一个后台管理系统,基于经典技术组合(spring boot,apache shiro,mybatis,thymeleaf)主要是让开发者注重专注业务࿰…...

双向链表及如何使用GLib的GList实现双向链表
双向链表是一种比单向链表更为灵活的数据结构,与单向链表相比可以有更多的应用场景,本文讨论双向链表的基本概念及实现方法,并着重介绍使用GLib的GList实现单向链表的方法及步骤,本文给出了多个实际范例源代码,旨在帮助…...

ProCalun卡伦纯天然万用膏,全家的皮肤健康守护
受季节交替、生活环境变化、空气污染等方面因素的影响,加上作息不规律导致的免疫力降低,我们或多或少会出现一些如湿疹、痤疮、瘙痒之类的皮肤问题,且反复概率很高。很多人盲目用药,甚至诱发激素依赖性皮炎。所以近年来࿰…...

FastAPI全方位分析:优劣尽显
近年来,随着技术的飞速发展,快速构建高性能API的需求越来越强烈。Python作为一个广泛使用的编程语言,也在这一领域下涌现出了许多优秀的框架。FastAPI便是其中一颗璀璨的新星。 FastAPI以其卓越的性能和独特的功能吸引了众多开发者。本文将深入剖析FastAPI的各个方面,详细…...

【rust】rust基础代码案例
文章目录 代码篇HelloWorld斐波那契数列计算表达式(加减乘除)web接口 优化篇target/目录占用一个g,仅仅一个actix的helloWorld demo升级rust版本, 通过rustupcargo换源windows下放弃吧,需要额外安装1g的toolchain并且要…...

【深度学习】PromptFix:多功能AI修图
PromptFix:你来提示,我们修图 NeurIPS 2024 最近,在计算机视觉和图像处理领域,一个名为PromptFix的新项目引起了广泛关注。PromptFix是一个基于PyTorch实现的开源项目,旨在根据用户的自然语言指令,对受损或需要处理的图像进行智能修复和优化。 本文将详细介绍PromptFix…...

2024最新AI绘画系统软件(Midjourney)+GPT4文档分析总结,多模态识图理解,AI文生图/图生图/混图生图(图像混合)
一、前言 人工智能的快速发展已成为全球关注的焦点,其应用领域广泛,涵盖绘图、语言处理、视频编辑等。前沿技术不仅推动科技创新,还在艺术创作、内容生产和商业实践等方面展示出巨大潜力。例如,AI语言模型显著提升了内容自动生成、…...

【信号处理】基于联合图像表示的深度学习卷积神经网络
Combined Signal Representations for Modulation Classification Using Deep Learning: Ambiguity Function, Constellation Diagram, and Eye Diagram 信号表示 Ambiguity Function(AF) 模糊函数描述了信号的两个维度(dimensions):延迟(delay)和多普勒(Doppler)。 …...

C#基础-区分数组与集合
目录 区分数组与集合 1.定义 1)数组 2)集合 2.大小 1)数组 2)集合 3.访问速度 1)数组 2)集合 4.内存管理 1)数组 2)集合 5.使用场景 1)数组 2࿰…...

ORACLE 19C 安装数据库补丁的详细过程
ORACLE 19c安装DB补丁: 1 确定OPatch的可用性:这里需要注意的是p6880880_190000_Linux-x86-64.zip是有版本对应区别的,需要注意你要打的补丁版本是否支持。 2 将原$ORACLE_HOME目录下的OPatch目录删除或者改名,比如说:…...

tensorflow案例5--基于改进VGG16模型的马铃薯识别,准确率提升0.6%,计算量降低78.07%
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 前言 本次采用VGG16模型进行预测,准确率达到了98.875,但是修改VGG16网络结构, 准确率达到了0.9969,并且计算量…...

代码中的设计模式-策略模式
假如我们有一段代码,有很多的if else function executeAction(type) {if (type A) {console.log(Action A);} else if (type B) {console.log(Action B);} else if (type C) {console.log(Action C);} else {console.log(Unknown action);} }executeAction(A); // 输出: Ac…...

后端Node学习项目-项目基础搭建
前言 各位好,我是前端SkyRain。最近为了响应公司号召,开始对后端知识的学习,作为纯粹小白,记录下每一步的操作流程。 项目仓库:https://gitee.com/sky-rain-drht/drht-node 因为写了文档,代码里注释不是很…...

Python | Leetcode Python题解之第538题把二叉搜索树转换为累加树
题目: 题解: class Solution:def convertBST(self, root: TreeNode) -> TreeNode:def getSuccessor(node: TreeNode) -> TreeNode:succ node.rightwhile succ.left and succ.left ! node:succ succ.leftreturn succtotal 0node rootwhile nod…...

【ZeroMQ 】ZeroMQ中inproc优势有哪些?与其它传输协议有哪些不同?
inproc 是 ZeroMQ 提供的一种传输协议,用于在同一进程内的不同线程之间进行高效的通信。与其他传输协议(如 tcp、ipc 等)不同,inproc 专门针对线程间通信进行了优化,具有极低的延迟和开销。以下是 inproc 的底层原理和…...

spark的学习-03
RDD的创建的两种方式: 方式一:并行化一个已存在的集合 方法:parallelize 并行的意思 将一个集合转换为RDD 方式二:读取外部共享存储系统 方法:textFile、wholeTextFile、newAPIHadoopRDD等 读取外部存储系统的数…...

一文了解Android SELinux
在Android系统中,SELinux(Security-Enhanced Linux)是一个增强的安全机制,用于对系统进行强制访问控制(Mandatory Access Control,MAC)。它限制了应用程序和进程的访问权限,提供了更…...

数据血缘追踪是如何在ETL过程中发挥作用?
在大数据环境下,数据血缘追踪具有重要意义,它能够帮助用户了解数据的派生关系、变换过程和使用情况,进而提高数据的可信度和可操作性。通过数据血缘追踪,ETL用户可以准确追溯数据的来源,快速排查数据异常和问题。 一、…...

跟我学C++中级篇——生产中如何调试程序
一、程序的BUG和异常 程序不是发布到生产环境就万事大吉了。没有人敢保证自己写的代码没有BUG,放心,说这种话的人,基本可以断定是小白。如果在开发阶段出现问题,还是比较好解决的,但是如果真到了生产上,可…...

Python爬虫实战 | 爬取网易云音乐热歌榜单
网易云音乐热歌榜单爬虫实战 环境准备 Python 3.xrequests 库BeautifulSoup 库 安装依赖 pip install requests beautifulsoup4代码 import requests from bs4 import BeautifulSoupdef get_cloud_music_hot_songs():url "http://music.163.com/#/discover/playlist…...

apk因检测是否使用代理无法抓包绕过方式
最近学习了如何在模拟器上抓取APP的包,APP防恶意行为的措施可分为三类: (1)反模拟器调试 (2)反代理 (3)反证书检验 第一种情况: 有的app检验是否使用系统代理,…...

DevOps业务价值流:架构设计最佳实践
系统设计阶段作为需求与研发之间的桥梁,在需求设计阶段的原型设计评审环节,尽管项目组人员可能未完全到齐,但关键角色必须到位,包括技术组长和测试组长。这一安排旨在同步推进两项核心任务:一是完成系统的架构设计&…...

计算机网络——SDN
分布式控制路由 集中式控制路由...

开源数据库 - mysql - innodb源码阅读 - master线程(一)
master struct /** The master thread controlling the server. */void srv_master_thread() {DBUG_TRACE;srv_slot_t *slot; // 槽位THD *thd create_internal_thd(); // 创建内部线程ut_ad(!srv_read_only_mode); //断言 srv_read_only_mode 为 falsesrv_main_thread_proce…...

vscode ssh连接autodl失败
autodl服务器已开启,vscode弹窗显示连接失败 0. 检查状态 这里的端口和主机根据自己的连接更改 ssh -p 52165 rootregion-45.autodl.pro1. 修改config权限 按返回的路径找到config文件 右键--属性--安全--高级--禁用继承--从此对象中删除所有已继承的权限--添加…...

文件系统和日志管理 附实验:远程访问第一台虚拟机日志
文件系统和日志管理 文件系统:文件系统提供了一个接口,用户用来访问硬件设备(硬盘)。 硬件设备上对文件的管理 文件存储在硬盘上,硬盘最小的存储单位是512字节,扇区。 文件在硬盘上的最小存储单位&…...

云上拼团GO指南——腾讯云博客部署案例,双11欢乐GO
知孤云出岫-CSDN博客 目录 腾讯云双11活动介绍 一.双十一活动入口 二.活动亮点 (一)双十一上云拼团Go (二)省钱攻略 (三)上云,多类型服务器供您选择 三.会员双十一冲榜活动 (一)活动内容 &#x…...

【VScode】VScode内的ChatGPT插件——CodeMoss全解析与实用教程
在当今快速发展的编程世界中,开发者们面临着越来越多的挑战。如何提高编程效率,如何快速获取解决方案,成为了每位开发者心中的疑问。今天,我们将深入探讨一款颠覆传统编程体验的插件——CodeMoss,它将ChatGPT的强大功能…...