Redis原理篇——Redis数据结构
Redis原理篇

1、原理篇-Redis数据结构
1.1 Redis数据结构-动态字符串
我们都知道Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。
不过Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题:
- 获取字符串长度的需要通过运算
- 非二进制安全(不能包含‘\0’字符)
- 不可修改,不能进程扩容
Redis构建了一种新的字符串结构,称为简单动态字符串(Simple Dynamic String),简称SDS。例如,我们执行命令:

那么Redis将在底层创建两个SDS,其中一个是包含“name”的SDS,另一个是包含“虎哥”的SDS。
Redis是C语言实现的,其中SDS是一个结构体,源码如下:

例如,一个包含字符串“name”的sds结构如下:

SDS之所以叫做动态字符串,是因为它具备动态扩容的能力,例如一个内容为“hi”的SDS:

假如我们要给SDS追加一段字符串“,Amy”,这里首先会申请新内存空间:
当判断缓冲区内存大小不够用的时候,会进行扩容:
如果新字符串小于1M,则新空间为扩展后字符串长度的两倍;
如果新字符串大于1M,则新空间为扩展后字符串长度+1M。
称为内存预分配。
申请内存的操作非常消耗资源,所以可以提升性能。

1.2 Redis数据结构-intset(整数数组)
IntSet是Redis中set集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。结构如下:

其中的encoding包含三种模式,表示存储的整数大小不同:

为了方便查找,Redis会将intset中所有的整数按照升序依次保存在contents数组中,结构如图:

现在,数组中每个数字都在int16_t的范围内,因此采用的编码方式是INTSET_ENC_INT16,每部分占用的字节大小为:encoding:4字节length:4字节 contents:2字节 * 3 = 6字节

整数集合的升级操作
我们向该其中添加一个数字:50000,这个数字超出了int16_t的范围,intset会自动升级编码方式到合适的大小。以当前案例来说流程如下:
- 升级编码为INTSET_ENC_INT32, 每个整数占4字节,并按照新的编码方式及元素个数扩容数组
- 倒序依次将数组中的元素拷贝到扩容后的正确位置
- 将待添加的元素放入数组末尾
- 最后,将inset的encoding属性改为INTSET_ENC_INT32,将length属性改为4

源码如下:



小总结:
Intset可以看做是特殊的整数数组,具备一些特点:
- Redis会确保Intset中的元素唯一、有序
- 具备类型升级机制,可以节省内存空间
- 底层采用二分查找方式来查询
1.3 Redis数据结构-Dict(哈希表)
键值对在数据库中就是使用哈希表来存储的:


我们知道Redis是一个键值型(Key-Value Pair)的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)

当我们向Dict添加键值对时,Redis首先根据key计算出hash值(h),然后利用 h & sizemask来计算元素应该存储到数组中的哪个索引位置。我们存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。

Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)

Dict的rehash触发的条件:
Dict中的HashTable就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。
Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size) ,满足以下两种情况时会触发哈希表扩容:

size是数组的大小,uesd是总共的元素


Dict的rehash
不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的size和sizemask变化,而key的查询与sizemask有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash。过程是这样的:
- 计算新hash表的realeSize,值取决于当前要做的是扩容还是收缩:
- 如果是扩容,则新size为第一个大于等于dict.ht[0].used + 1的2^n
- 如果是收缩,则新size为第一个大于等于dict.ht[0].used的2^n (不得小于4)
这里的rehash是渐进式hash,每一次涉及到增删改查到来的时候,都进行一次rehash,直到所有的数据都迁移完成。

小总结:
Dict的结构:
- 类似java的HashTable,底层是数组加链表来解决哈希冲突
- Dict包含两个哈希表,ht[0]平常用,ht[1]用来rehash,rehash包括扩容和收缩
Dict的伸缩:
- 当LoadFactor大于5或者LoadFactor大于1并且没有子进程任务时,Dict扩容
- 当LoadFactor小于0.1时,Dict收缩
- 扩容大小为第一个大于等于used + 1的2^n
- 收缩大小为第一个大于等于used 的2^n
- Dict采用渐进式rehash,即每次访问Dict时都会执行一次rehash,也就是一次把一个位置上的所有数据进行rehash,直到所有的数据都写入这个新的hash表中。
- rehash时ht[0]只减不增,新增操作只在ht[1]执行,其它操作在两个哈希表都会执行。
普通双向链表的有点和缺点:

1.4 Redis数据结构-ZipList(压缩列表)
这段话记住:


| 属性 | 类型 | 长度 | 用途 |
|---|---|---|---|
| zlbytes | uint32_t | 4 字节 | 记录整个压缩列表占用的内存字节数 |
| zltail | uint32_t | 4 字节 | 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。 |
| zllen | uint16_t | 2 字节 | 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。 |
| entry | 列表节点 | 不定 | 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。 |
| zlend | uint8_t | 1 字节 | 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。 |
ZipListEntry
ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:

- previous_entry_length:前一节点的长度,占1个或5个字节。
- 如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
- 如果前一节点的长度大于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据
- encoding:编码属性,记录content的数据类型(字符串还是整数)以及长度,占用1个、2个或5个字节
- contents:负责保存节点的数据,可以是字符串或整数
所以使用这种方式,在本节点就知道前一个结点的长度,这样就能根据自己的地址找到前一个结点的地址,实现逆序遍历。
ZipList中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。例如:数值0x1234,采用小端字节序后实际存储值为:0x3412
Encoding编码
ZipListEntry中的encoding编码分为字符串和整数两种:字符串:如果encoding是以“00”、“01”或者“10”开头,则证明content是字符串,编码的后面几位可以标识字符串内容的大小
| 编码 | 编码长度 | 字符串大小 |
|---|---|---|
| 00pppppp | ||
| 01pppppp | qqqqqqqq | |
| 10000000 | qqqqqqqq |
例如,我们要保存字符串:“ab”和 “bc”
encoding:能体现编码类型和长度,后面的就是contents,使用的是ASC码来表示的。

前面的三部分都是使用了小端方式

ZipListEntry中的encoding编码分为字符串和整数两种:
- 整数:如果encoding是以“11”开始,则证明content是整数,且encoding固定只占用1个字节
| 编码 | 编码长度 | 整数类型 |
|---|---|---|
| 11000000 | 1 | int16_t(2 bytes) |
| 11010000 | 1 | int32_t(4 bytes) |
| 11100000 | 1 | int64_t(8 bytes) |
| 11110000 | 1 | 24位有符整数(3 bytes) |
| 11111110 | 1 | 8位有符整数(1 bytes) |
| 1111xxxx | 1 | 直接在xxxx位置保存数值,范围从0001~1101,减1后结果为实际值 |

整个结构:

ZipList的缺点:只能从前向后或者从后向前遍历,如果节点在中间且节点比较多,则比较耗费时间。
1.5 Redis数据结构-ZipList的连锁更新问题

但是,如果现在有个元素加入到队头,并且大小占用超过了254字节,所以后面的一个结点的记录上一个节点的长度就会改变,然后后面连续的都会改变。

ZipList这种特殊情况下产生的连续多次空间扩展操作称之为连锁更新(Cascade Update)。新增、删除都可能导致连锁更新的发生。
小总结:
ZipList特性:

ZipList劣势:不能数据过多,因为找到一大块连续内存是比较困难的,所以引入了QuickList
1.6 Redis数据结构-QuickList(快速链表)
为了解决一次申请较大的内存空间比较困难以及连续更新的问题,引入了快速链表,就是双向链表+压缩链表的形式。
问题1:ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。怎么办?
答:为了缓解这个问题,我们必须限制ZipList的长度和entry大小。
问题2:但是我们要存储大量数据,超出了ZipList最佳的上限该怎么办?
答:我们可以创建多个ZipList来分片存储数据。
问题3:数据拆分后比较分散,不方便管理和查找,这多个ZipList如何建立联系?
答:Redis在3.2版本引入了新的数据结构QuickList,它是一个双端链表,只不过链表中的每个节点都是一个ZipList。

为了避免QuickList中的每个ZipList中entry过多,Redis提供了一个配置项:list-max-ziplist-size来限制。如果值为正,则代表ZipList的允许的entry个数的最大值如果值为负,则代表ZipList的最大内存大小,分5种情况:
- -1:每个ZipList的内存占用不能超过4kb
- -2:每个ZipList的内存占用不能超过8kb
- -3:每个ZipList的内存占用不能超过16kb
- -4:每个ZipList的内存占用不能超过32kb
- -5:每个ZipList的内存占用不能超过64kb
其默认值为 -2:


以下是QuickList的和QuickListNode的结构源码:

我们接下来用一段流程图来描述当前的这个结构

compress是首位不压缩的数量:中间的是压缩的方式
总结:
QuickList的特点:
- 是一个节点为ZipList的双端链表
- 节点采用ZipList,解决了传统链表的内存占用问题
- 控制了ZipList大小,解决连续内存空间申请效率问题
- 中间节点可以压缩,进一步节省了内存
- 所以QuickList具有链表和ZipList的优点,即既可以分散存储连接,又可以占用的内存比较少,因为ZipList是比较节省空间的
QuickList和ZipList特点就是节省内存,不过他们在遍历的时候只能从头遍历或者从尾遍历,中间随机查询性能比较低。所以有了下面的跳表
1.7 Redis数据结构-SkipList(跳表)
SkipList(跳表)使用的是 链表,但与传统链表相比有几点差异:
- 元素按照升序排列
- 使用多级指针,存储节点可能包含多个指针,指针跨度不同。

查找过程:先从第一个节点的最高级指针开始,找到下一个节点,然后下一个节点和要找的节点的得分,如果要找的得分大,就继续往后查找,如果要找的得分小,那就使用下一级的指针,类似与二分查找。


小总结:
SkipList的特点:
- 跳跃表是一个双向链表,每个节点都包含score和ele值
- 节点按照score值排序,score值一样则按照ele字典排序
- 每个节点都可以包含多层指针,层数是1到32之间的随机数
- 不同层指针到下一个节点的跨度不同,层级越高,跨度越大
- 增删改查效率与红黑树基本一致(lonN,实现却更简单
为什么使用跳表而不使用平衡树?

1.8 Redis数据结构-listpack
虽然快速链表的出现减少了连续更新来的性能影响,但是由于它的设计记录了前一个结点的大小,所以说还是会出现这个问题。
因为,redis5.0出现了一个listpack的结构来代替压缩链表。也就是说listpack只会记录当前节点的长度,这样新增元素的时候不会影响其他结点的长度字段。

结构设计:


即从当前节点的地址解析到前一个节点的长度,就可以得到前一个结点的地址。
1.9 Redis数据结构-RedisObject
Redis中的任意数据类型的键和值都会被封装为一个RedisObject,也叫做Redis对象,源码如下:

这个对象头部就是占用16个字节。
所以如果是String类型,每个String都会有一个对象头,如果是list,那么只需要一个对象头。
Redis的编码方式
Redis中会根据存储的数据类型不同,选择不同的编码方式,共包含11种不同类型:

五种数据结构
Redis中会根据存储的数据类型不同,选择不同的编码方式。每种数据类型的使用的编码方式如下:


2.0 Redis数据结构-String
Stirng类型有三种编码方式,其基本编码方式是RAW,基于简单动态字符串(SDS)实现,redis对象头中有一个指针指向这个SDS,如果存储的SDS长度小于44字节,则会采用EMBSTR编码,此时对象头与SDS是一段连续空间。****如果⼀个String类型的value的值是数字,则会采用INT编码,直接保存在redis对象头的ptr位置。
String是Redis中最常见的数据存储类型:
其基本编码方式是RAW,基于简单动态字符串(SDS)实现,存储上限为512mb。

如果存储的SDS长度小于44字节,则会采用EMBSTR编码,此时object head与SDS是一段连续空间。申请内存时只需要调用一次内存分配函数,效率更高。因为内存切换涉及到内核态和用户态的切换。所以我们使用String的时候,最好不要超过44字节

如果⼀个String类型的value的值是数字,则会采用INT编码,直接保存在redis对象头的ptr位置。

总结:三种编码方式


2.1 Redis数据结构-List
List结构是由快速链表来实现的。
- QuickList:LinkedList + ZipList,可以从双端访问,内存占用较低,包含多个ZipList,存储上限高
Redis的List类型可以从首、尾操作列表中的元素:

哪一个数据结构能满足上述特征?
- LinkedList :普通链表,可以从双端访问,内存占用较高,内存碎片较多
- ZipList :压缩列表,可以从双端访问,内存占用低,存储上限低
- QuickList:LinkedList + ZipList,可以从双端访问,内存占用较低,包含多个ZipList,存储上限高
Redis的List结构类似一个双端链表,可以从首、尾操作列表中的元素:
在3.2版本之前,Redis采用ZipList和LinkedList来实现List,当元素数量小于512并且元素大小小于64字节时采用ZipList编码,超过则采用LinkedList编码。
在3.2版本之后,Redis统一采用QuickList来实现List:

2.2 Redis数据结构-Set结构
set这个数据类型为了保证查询效率和唯一性,采用了哈希表来存储,key就是set元素,value统一是null。当储存的所有数据都是整数的时候,set会采用整数集合Intset来存储,以节省内存。
Set是Redis中的单列集合,满足下列特点:
- 不保证有序性
- 保证元素唯一
- 求交集、并集、差集

可以看出,Set对查询元素的效率要求非常高,思考一下,什么样的数据结构可以满足?


结构如下:

2.3、Redis数据结构-ZSET
因为zset是是可以根据key找到score并且可以根据score进行排序的功能,所以底层采用的是跳表和哈希表,哈希表是用来进行查询,可以根据key来找到score,跳表可以根据score得分,并且能够快速的根据得分查询。性能比较好,但是内存占用比较大,所以当元素数量不多的时候,采用的是压缩列表来存储,即达到两个条件,分别是元素的数量小于128并且每个元素都小于64字节。
ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值:
- 可以根据score值排序后
- member必须唯一
- 可以根据member查询分数

因此,zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。之前学习的哪种编码结构可以满足?
- SkipList:可以排序,并且可以同时存储score和ele值(member),但是不能根据键值存储。
- HT(Dict):可以键值存储,并且可以根据key找value
所以Zset使用的是两种结合的方式:


性能比较好,但是内存占用比较大

ziplist本身没有排序功能,而且没有键值对的概念,因此需要有zset通过编码实现:
- ZipList是连续内存,因此score和element是紧挨在一起的两个entry, element在前,score在后
- score越小越接近队首,score越大越接近队尾,按照score值升序排列

2.4 、Redis数据结构-Hash

Hash结构与Redis中的Zset非常类似:
- 都是键值存储
- 都需求根据键获取值
- 键必须唯一
区别如下:
- zset的键是member,值是score;hash的键和值都是任意值
- zset要根据score排序;hash则无需排序


相关文章:
Redis原理篇——Redis数据结构
Redis原理篇 1、原理篇-Redis数据结构 1.1 Redis数据结构-动态字符串 我们都知道Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。 不过Redis没有直接使用C语言中的字符串,因为C语言字符串存…...
pdf文件预览和导出
抢先观看: window.URL.createObjectURL(): 用于根据传入的 Blob 对象或 File 对象生成一个临时的、可访问的 URL,仅在浏览器会话中有效,并且不会上传到服务器。 const url window.URL.createObjectURL(blob);Blob 对象: 是 …...
服务器数据恢复—RAID5阵列硬盘坏道掉线导致存储不可用的数据恢复案例
服务器存储数据恢复环境: 一台EqualLogic存储中有一组由16块SAS硬盘组建的RAID5阵列。上层划分了4个卷,采用VMFS文件系统,存放虚拟机文件。 服务器存储故障: 存储RAID5阵列中磁盘出现故障,有2块硬盘对应的指示灯亮黄灯…...
快速傅里叶变换(FFT)基础(附python实现)
对于非专业人士,傅里叶变换一直是一个神秘的武器,它可以分析出不同频域的信息,从时域转换到频域,揭示了信号的频率成分,对于数字信号处理(DSP)、图像、语音等数据来说,傅里叶变换是最…...
使用Docker-compose安装mysql5.7
1.首先选择一个目录用来存放docker-compse文件以及mysql的数据(例如logs、conf) cd /home mkdir mysql vi docker-compose.yml2.填写docker-compse.yml内容 version : 3 services:mysql:# 容器名(以后的控制都通过这个)container_name: mysql# 重启策略…...
如何管理PHP的API部署环境
管理PHP的API部署环境是一个涉及多个步骤和考虑因素的过程。以下是一些关键步骤和最佳实践,用于管理PHP的API部署环境: 一、选择合适的服务器和配置环境 选择服务器:根据API的访问量和性能需求,选择合适的服务器。可以选择物理服…...
web——sqliabs靶场——第一关
今天开始搞这个靶场,从小白开始一点点学习,加油!!!! 1.搭建靶场 注意点:1.php的版本问题,要用老版本 2.小p要先改数据库的密码,否则一直显示链接不上数据库 2.第一道题࿰…...
tartanvo ubuntu 20.04部署
1. 所有环境安装流程参考 2. 运行python3 tartanvo_node.py出现问题: ImportError: cannot import name int from numpy版本问题,卸载当前版本并更换版本: pip uninstall numpy pip install numpy1.22.4问题解决。 3. 采用2to3脚本将其代…...
SpringBoot整合Freemarker(三)
定义循环输出的宏 <#macro list title items> ${title?cap_first}:<#list items as x>*${x?cap_first}</#list> </#macro><list items["mouse", "elephant", "python"] title"Animals"/> 输出结果…...
Android 一个APP打开另一个app的两种方式,需添加QUERY_ALL_PACKAGES权限
加<uses-permission android:name"android.permission.QUERY_ALL_PACKAGES"/> 方式1:打开外部app,在新窗口打开。 private void doStartAppPackageName(String packagename) { // 通过包名获取此APP详细信息&#x…...
<数据集>草莓叶片病害识别数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:4371张 标注数量(xml文件个数):4371 标注数量(txt文件个数):4371 标注类别数:7 标注类别名称:[Angular Leafspot, Anthracnose Fruit Rot, Blossom Blight, Gray Mol…...
React 中 `key` 属性的警告及其解决方案
React 中 key 属性的警告及其解决方案 文章目录 React 中 key 属性的警告及其解决方案1. 引言2. 什么是 key 属性3. key 属性的重要性4. 常见的 key 属性警告及其原因4.1 缺少 key 属性4.2 使用不稳定的 key(如索引)4.3 重复的 key 值 5. 如何解决 key 属…...
OpenHarmony4.1蓝牙芯片如何适配?触觉智能RK3568主板SBC3568演示
当打开蓝牙后没有反应时,需要排查蓝牙节点是否对应、固件是否加载成功,本文介绍开源鸿蒙OpenHarmony4.1系统下适配蓝牙的方法,触觉智能SBC3568主板演示 修改对应节点 开发板蓝牙硬件连接为UART1,修改对应的节点,路径为…...
濮良贵《机械设计》第十版课后习题答案全解PDF电子版
《机械设计》(第十版)是“十二五”普通高等教育本科国家级规划教材, 是在《机械设计》(第九版)的基础上修订而成的。本次修订主要做了以下几项工作: 1. 内容的适当更新——自本书第九版出版以来, 机械工程及相关领域的新理论、新技术和新标准…...
Python进阶语法探索:列表推导式
在Python编程中,列表推导式(List Comprehensions)是一种简洁而强大的语法结构,它允许你以一行代码的形式创建列表,同时执行循环、条件判断等操作。列表推导式不仅提高了代码的可读性,还显著提升了编程效率。…...
java合并图片与文字
通过java来绘制海报,加载外部字体并设置样式大小与加粗、设置背景图、合并图片,下面是示例 import javax.imageio.ImageIO; import java.awt.Color; import java.awt.Font; import java.awt.FontMetrics; import java.awt.Graphics2D; import java.awt.…...
OpenCV快速入门
OpenCV(Open Source Computer Vision Library,开源计算机视觉库)是一个广泛应用于图像处理、计算机视觉、视频分析等领域的开源库。它不仅适用于研究人员和开发人员,还被广泛用于学术、工业和商业应用。本篇文章将帮助你快速了解 …...
ArcGIS软件之“计算面积几何”地图制作
一、消防站的泰森多边形 效果图: 二、人口调查的泰森多边形 确定后效果图: 三、人口调查的泰森多边形属性设置 确定后的效果图: 四、计算面积几何,用于求密度 先添加字段area_1,然后设置浮点型及字段属性 五…...
RHCE 第四次作业
一.搭建dns服务器能够对自定义的正向或者反向域完成数据解析查询。 1.配置环境 [rootlocalhost ~]# yum install bind [rootlocalhost ~]#systemctl stop firewalld [rootlocalhost ~]#setenforce 0 2.配置DNS主服务器 [rootlocalhost ~]# vim /etc/named.conf options { …...
【贪心算法】No.1---贪心算法(1)
文章目录 前言一、贪心算法:二、贪心算法示例:1.1 柠檬⽔找零1.2 将数组和减半的最少操作次数1.3 最⼤数1.4 摆动序列1.5 最⻓递增⼦序列1.6 递增的三元⼦序列 前言 👧个人主页:小沈YO. 😚小编介绍:欢迎来到…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
