PyQt入门指南四十六 性能优化策略
在PyQt应用程序中,性能优化是一个重要的考虑因素,尤其是在处理大型数据集或复杂图形界面时。以下是一些常见的性能优化策略:
1. 使用延迟加载(Lazy Loading)
延迟加载是一种优化技术,只在需要时加载资源。例如,如果你有一个包含大量数据的列表,可以在用户滚动到列表底部时再加载更多数据,而不是一次性加载所有数据。
class LazyLoadingListWidget(QListWidget):def __init__(self, parent=None):super().__init__(parent)self.data = []self.page_size = 20self.current_page = 0self.load_data()def load_data(self):start = self.current_page * self.page_sizeend = start + self.page_sizenew_data = self.fetch_data(start, end)self.add_items(new_data)self.current_page += 1def fetch_data(self, start, end):# 模拟从数据库或网络获取数据return [f"Item {i}" for i in range(start, end)]def add_items(self, items):for item in items:self.addItem(item)def scrollContentsBy(self, dx, dy):super().scrollContentsBy(dx, dy)if self.verticalScrollBar().value() == self.verticalScrollBar().maximum():self.load_data()
2. 使用批量更新(Batch Updates)
在进行大量数据更新时,可以使用批量更新来减少重绘次数。例如,在更新表格数据时,可以先禁用自动重绘,更新完数据后再启用自动重绘。
class BatchUpdateTableWidget(QTableWidget):def __init__(self, parent=None):super().__init__(parent)self.setRowCount(1000)self.setColumnCount(5)def update_data(self):self.setUpdatesEnabled(False)for row in range(self.rowCount()):for col in range(self.columnCount()):self.setItem(row, col, QTableWidgetItem(f"Data {row},{col}"))self.setUpdatesEnabled(True)self.viewport().update()
3. 使用线程(Threading)
对于耗时的操作,可以使用线程来避免阻塞主线程。PyQt提供了QThread
类来实现多线程。
from PyQt5.QtCore import QThread, pyqtSignalclass WorkerThread(QThread):data_ready = pyqtSignal(list)def run(self):data = self.fetch_data()self.data_ready.emit(data)def fetch_data(self):# 模拟耗时操作import timetime.sleep(5)return [f"Item {i}" for i in range(1000)]class MainWindow(QMainWindow):def __init__(self):super().__init__()self.worker = WorkerThread()self.worker.data_ready.connect(self.on_data_ready)self.worker.start()def on_data_ready(self, data):self.list_widget.addItems(data)
4. 使用缓存(Caching)
对于频繁访问的数据,可以使用缓存来减少重复计算或网络请求。例如,可以使用functools.lru_cache
来缓存函数结果。
from functools import lru_cache@lru_cache(maxsize=128)
def fetch_data(key):# 模拟耗时操作import timetime.sleep(1)return f"Data for {key}"
5. 减少重绘区域(Reduce Redraw Area)
在进行界面更新时,尽量减少重绘区域,只更新需要更新的部分。可以使用QWidget.update()
方法来指定重绘区域。
class ReducedRedrawWidget(QWidget):def __init__(self, parent=None):super().__init__(parent)self.setGeometry(0, 0, 800, 600)def paintEvent(self, event):painter = QPainter(self)painter.setRenderHint(QPainter.Antialiasing)painter.drawRect(self.rect().adjusted(10, 10, -10, -10))
6. 使用事件过滤器(Event Filters)
通过使用事件过滤器,可以在事件发生时进行优化处理。例如,可以在鼠标移动事件中进行优化处理。
class EventFilterWidget(QWidget):def __init__(self, parent=None):super().__init__(parent)self.installEventFilter(self)def eventFilter(self, obj, event):if event.type() == QEvent.MouseMove:# 处理鼠标移动事件return Truereturn super().eventFilter(obj, event)
通过以上这些策略,可以有效地优化PyQt应用程序的性能,提升用户体验。
相关文章:
PyQt入门指南四十六 性能优化策略
在PyQt应用程序中,性能优化是一个重要的考虑因素,尤其是在处理大型数据集或复杂图形界面时。以下是一些常见的性能优化策略: 1. 使用延迟加载(Lazy Loading) 延迟加载是一种优化技术,只在需要时加载资源。…...

【RMA】基于知识注入和模糊学习的多模态歧义分析
abstract 多模态情感分析(MSA)利用互补的多模态特征来预测情感极性,主要涉及语言、视觉和音频三种模态。现有的多模态融合方法主要考虑不同模态的互补性,而忽略了模态之间的冲突所导致的歧义(即文本模态预测积极情绪&…...

CulturalBench :一个旨在评估大型语言模型在全球不同文化背景下知识掌握情况的基准测试数据集
2024-10-04,为了提升大型语言模型在不同文化背景下的实用性,华盛顿大学、艾伦人工智能研究所等机构联合创建了CulturalBench。这个数据集包含1,227个由人类编写和验证的问题,覆盖了包括被边缘化地区在内的45个全球区域。CulturalBench的推出&…...

Git 入门篇(一)
前言 操作系统:win11 64位 与gitee搭配使用 Git 入门篇(一) Git 入门篇(二) Git 入门篇(三) 目录 git下载、安装与配置 下载 安装 配置 git下载、安装与配置 下载 官网:git-…...
一个灵活且功能强大的动画库 Popmotion
一个灵活且功能强大的动画库 Popmotion 什么是 Popmotion? Popmotion 是一个强大的 JavaScript 动画库,提供了一系列简洁的 API,方便开发者创建流畅的动画效果。它支持不同类型的动画,包括 CSS 动画、SVG 动画和 DOM 动画&#…...

如何解决传统能源企业后备人才不足、人才规划缺失问题
如何解决传统能源企业后备人才不足、人才规划缺失问题 很多传统能源企业都面临着老员工逐渐退休,新员工还没有培养起来的问题,缺乏提前对人力资源规划的意识,导致当企业要开展新业务时或者老员工离职的时候,缺乏合适的人选。特别…...

PDF模板制作与填充(Java)
1.PDF模板制作 准备原始模板 准备一个原始PDF模板,可以编辑好Word,预留出要填充的部分,再转换成PDF格式。 设置表单域 用任意PDF编辑器打开PDF模板文件,设置表单域,下面以WPS为例: 拖动文本域到需要填充的…...
LeetCode题练习与总结:迷你语法分析器--385
一、题目描述 给定一个字符串 s 表示一个整数嵌套列表,实现一个解析它的语法分析器并返回解析的结果 NestedInteger 。 列表中的每个元素只可能是整数或整数嵌套列表 示例 1: 输入:s "324", 输出:324 解释ÿ…...
Unity WebGL交互通信
Unity 调用 H5 本文使用的 unity 版本为:2021.3.3 1.在unity中通过c#的特性DllImport导出外部实现函数 [DllImport("__Internal")]private static extern void callJsString(string param);[DllImport("__Internal")]private static extern vo…...

王道考研之数据结构
数据结构系列 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 数据结构 数据结构系列1.线性表1.1 线性表的定义和相关概念1.2 线性表的创销 增删查改 判空表长打印 2.顺序表2.1 顺序表定义和相关概念2.2 顺序表的静态实现2.3 顺序表的…...

实习冲刺Day17
算法题 x的平方根 69. x 的平方根 - 力扣(LeetCode) class Solution { public:int mySqrt(int x) {long left 0,right x;//定义左右边界//数值取的大longlong类型while (left < right) {long mid (right-left1)/2left;//定义中间节点if ((mid *…...
我自己nodejs练手时常用的一些库基础用法
我自己在使用nodejs以及前端实战练习时常用的一些库的基本使用 1.bcrypt //注册账号时,给密码加密 password是前端传过来的密码,hashPassword是存到数据库中的密码 const bcrypt require(bcrypt) const hashPassword bcrypt.hash(password,10) //登…...

岛屿数量问题
给一个0 1矩阵,1代表是陆地,0代表海洋, 如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 岛屿问题: 相邻陆地可以组成一个岛屿(相邻:上下左右) 判断岛屿个数。 C 解决方案 #include &…...

智能制造基础- TPM(全面生产维护)
TPM 前言一、TPM二、TPM实施步骤三、 消除主要问题3.1 实施指南3.2 如何进行“主要问题”的消除? 四、自主维护4.1 实施指南4.2 主要工作内容4.3 如何进行“自主维护“ 五、计划维护5.1 实施指南5.2 如何实施计划维护 六、TPM 适当的 设备 设计5.1 实施指南5.2 如何…...
C++学习笔记----11、模块、头文件及各种主题(一)---- 模板概览与类模板(4)
2.2.2、显式实例化 有危险存在于有些类模板成员函数的编译错误,在隐式实例化时没有注意到。未被使用的类模板成员函数也可能包含语法错误,因为它们不会被编译到。这会使得检测代码的语法错误很困难。可以强制编译器生成所有成员函数的代码,vi…...

【力扣热题100】[Java版] 刷题笔记-160. 相交链表
题目:160. 相交链表 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意…...

多线程和线程同步复习
多线程和线程同步复习 进程线程区别创建线程线程退出线程回收全局写法传参写法 线程分离线程同步同步方式 互斥锁互斥锁进行线程同步 死锁读写锁api细说读写锁进行线程同步 条件变量生产者消费者案例问题解答加强版生产者消费者 总结信号量信号量实现生产者消费者同步-->一个…...

贝式计算的 AI4S 观察:使用机器学习对世界进行感知与推演,最大魅力在于横向扩展的有效性
「传统研究方法高度依赖于科研人员自身的特征和问题定义能力,通常采用小数据,在泛化能力和拓展能力上存疑。而 AI 研究方法则需要引入大规模、高质量数据,并采用机器学习进行特征抽取,这使得产生的科研结果在真实世界的问题中非常…...

容器化技术入门:Docker详解
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 容器化技术入门:Docker详解 容器化技术入门:Docker详解 容器化技术入门:Docker详解 引言 Doc…...
基于SSM(Spring + Spring MVC + MyBatis)框架的药房管理系统
基于SSM(Spring Spring MVC MyBatis)框架的药房管理系统 项目概述 功能需求 用户管理:管理员可以添加、删除、修改和查询用户信息。药品管理:支持对药品信息的增删改查操作,包括药品名称、价格、库存量等。供应商…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...