当前位置: 首页 > news >正文

岛屿数量问题

        给一个0 1矩阵,1代表是陆地,0代表海洋, 如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 岛屿问题: 相邻陆地可以组成一个岛屿(相邻:上下左右) 判断岛屿个数。

 C++ 解决方案

#include <iostream>
#include <vector>using namespace std;void dfs(vector<vector<int>>& grid, int i, int j) {if (i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size() || grid[i][j] == 0) {return;}grid[i][j] = 0; // Mark the current cell as visited// Visit all four adjacent cellsdfs(grid, i - 1, j); // Updfs(grid, i + 1, j); // Downdfs(grid, i, j - 1); // Leftdfs(grid, i, j + 1); // Right
}int numIslands(vector<vector<int>>& grid) {int count = 0;for (int i = 0; i < grid.size(); ++i) {for (int j = 0; j < grid[0].size(); ++j) {if (grid[i][j] == 1) {++count;dfs(grid, i, j); // Start DFS from the current cell to mark all connected 1s as visited}}}return count;
}int main() {vector<vector<int>> grid = {{1, 1, 0, 0, 0},{1, 1, 0, 0, 1},{0, 0, 1, 0, 1},{0, 0, 0, 1, 1}};cout << "Number of islands: " << numIslands(grid) << endl;return 0;
}

Python 解决方案 

def dfs(grid, i, j):if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]) or grid[i][j] == 0:returngrid[i][j] = 0  # Mark the current cell as visited# Visit all four adjacent cellsdfs(grid, i - 1, j)  # Updfs(grid, i + 1, j)  # Downdfs(grid, i, j - 1)  # Leftdfs(grid, i, j + 1)  # Rightdef num_islands(grid):count = 0for i in range(len(grid)):for j in range(len(grid[0])):if grid[i][j] == 1:count += 1dfs(grid, i, j)  # Start DFS from the current cell to mark all connected 1s as visitedreturn count# Example usage
grid = [[1, 1, 0, 0, 0],[1, 1, 0, 0, 1],[0, 0, 1, 0, 1],[0, 0, 0, 1, 1]
]print("Number of islands:", num_islands(grid))

解释

  1. 深度优先搜索(DFS)
    • dfs函数用于遍历所有与当前陆地相连的陆地,并将它们标记为已访问(即0)。
    • 每当遇到一个未访问的陆地(即值为1的单元格),我们增加岛屿计数,并调用dfs来标记所有相连的陆地。
  2. 遍历矩阵
    • numIslands函数遍历整个矩阵,每当遇到一个新的陆地时,调用dfs函数,并增加岛屿计数。

复杂度

  • 时间复杂度:O(M * N),其中M是矩阵的行数,N是矩阵的列数,因为我们需要遍历整个矩阵一次。
  • 空间复杂度:O(M * N)(在极端情况下,递归调用栈的深度可能达到这个级别),但由于DFS的深度通常较小,实际空间占用可能会更小。

相关文章:

岛屿数量问题

给一个0 1矩阵&#xff0c;1代表是陆地&#xff0c;0代表海洋&#xff0c; 如果两个1相邻&#xff0c;那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 岛屿问题: 相邻陆地可以组成一个岛屿&#xff08;相邻:上下左右&#xff09; 判断岛屿个数。 C 解决方案 #include &…...

智能制造基础- TPM(全面生产维护)

TPM 前言一、TPM二、TPM实施步骤三、 消除主要问题3.1 实施指南3.2 如何进行“主要问题”的消除&#xff1f; 四、自主维护4.1 实施指南4.2 主要工作内容4.3 如何进行“自主维护“ 五、计划维护5.1 实施指南5.2 如何实施计划维护 六、TPM 适当的 设备 设计5.1 实施指南5.2 如何…...

C++学习笔记----11、模块、头文件及各种主题(一)---- 模板概览与类模板(4)

2.2.2、显式实例化 有危险存在于有些类模板成员函数的编译错误&#xff0c;在隐式实例化时没有注意到。未被使用的类模板成员函数也可能包含语法错误&#xff0c;因为它们不会被编译到。这会使得检测代码的语法错误很困难。可以强制编译器生成所有成员函数的代码&#xff0c;vi…...

【力扣热题100】[Java版] 刷题笔记-160. 相交链表

题目&#xff1a;160. 相交链表 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意…...

多线程和线程同步复习

多线程和线程同步复习 进程线程区别创建线程线程退出线程回收全局写法传参写法 线程分离线程同步同步方式 互斥锁互斥锁进行线程同步 死锁读写锁api细说读写锁进行线程同步 条件变量生产者消费者案例问题解答加强版生产者消费者 总结信号量信号量实现生产者消费者同步-->一个…...

贝式计算的 AI4S 观察:使用机器学习对世界进行感知与推演,最大魅力在于横向扩展的有效性

「传统研究方法高度依赖于科研人员自身的特征和问题定义能力&#xff0c;通常采用小数据&#xff0c;在泛化能力和拓展能力上存疑。而 AI 研究方法则需要引入大规模、高质量数据&#xff0c;并采用机器学习进行特征抽取&#xff0c;这使得产生的科研结果在真实世界的问题中非常…...

容器化技术入门:Docker详解

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 容器化技术入门&#xff1a;Docker详解 容器化技术入门&#xff1a;Docker详解 容器化技术入门&#xff1a;Docker详解 引言 Doc…...

基于SSM(Spring + Spring MVC + MyBatis)框架的药房管理系统

基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;框架的药房管理系统 项目概述 功能需求 用户管理&#xff1a;管理员可以添加、删除、修改和查询用户信息。药品管理&#xff1a;支持对药品信息的增删改查操作&#xff0c;包括药品名称、价格、库存量等。供应商…...

在服务器里安装2个conda

1、安装新的conda 下载地址&#xff1a;Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 本文选择&#xff1a;Anaconda3-2023.03-1-Linux-x86_64.sh 安装&#xff1a;Ubuntu安装Anaconda详细步骤&#xff08;Ubuntu22.04.1&#xff…...

web安全漏洞之ssrf入门

web安全漏洞之ssrf入门 1.什么是ssrf SSRF(Server Side Request Forgery,服务端请求伪造)是一种通过构造数据进而伪造成服务端发起请求的漏洞。因为请求是由服务器内部发起&#xff0c;所以一般情况下SSRF漏洞的目标往往是无法从外网访问的内系统。 SSRF漏洞形成的原理多是服务…...

《NoSQL 基础知识总结》

在当今的数据存储和管理领域&#xff0c;NoSQL 数据库正逐渐崭露头角&#xff0c;成为许多应用场景下的有力选择。今天&#xff0c;我们就来一起深入了解一下 NoSQL 的基础知识吧。 一、什么是 NoSQL&#xff1f; NoSQL&#xff0c;即 “Not Only SQL”&#xff0c;它是一种不…...

高校宿舍信息管理系统小程序

作者主页&#xff1a;编程千纸鹤 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参…...

2.索引:MySQL 索引分类

MySQL中的索引是提高数据查询速度的重要工具&#xff0c;就像一本书的目录&#xff0c;可以帮助我们快速定位到所需的内容。选择适合的索引类型对数据库设计和性能优化至关重要。本文将详细介绍MySQL中常见的索引类型&#xff0c;并重点讲解聚集索引和二级索引的概念及应用。 1…...

sklearn红酒数据集分类器的构建和评估

实验目的&#xff1a; 1. 掌握sklearn科学数据包中决策树和神经网络分类器的构建 2. 掌握对不同分类器进行综合评估 实验数据&#xff1a; 红酒数据集 红酒数据集利用红酒的化学特征来描述三种不同类型的葡萄酒。 实验内容与要求&#xff1a; 解压文件得到wine数据。利用pa…...

【IC验证面试常问-4】

IC验证面试常问-4 1.11 struct和union的异同1.13 rose 和posedge 的区别&#xff1f;1.14 semaphore的用处是什么&#xff1f;1.15 类中的静态方法使用注意事项有哪些&#xff1f;1.16 initial和final的区别&#xff1f; s t o p , stop, stop,finish的区别1.17 logic,wire和re…...

【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!

数据集介绍 【数据集】道路事故识别数据集 8939 张&#xff0c;目标检测&#xff0c;包含YOLO/VOC格式标注。数据集中包含2种分类&#xff1a;{0: accident, 1: non-accident}。数据集来自国内外图片网站和视频截图。检测范围道路事故检测、监控视角检测、无人机视角检测、等&…...

书生浦语第四期基础岛L1G4000-InternLM + LlamaIndex RAG 实践

文章目录 一、任务要求11.首先创建虚拟环境2. 安装依赖3. 下载 Sentence Transformer 模型4.下载 NLTK 相关资源5. 是否使用 LlamaIndex 前后对比6. LlamaIndex web7. LlamaIndex本地部署InternLM实践 一、任务要求1 任务要求1&#xff08;必做&#xff0c;参考readme_api.md&…...

基于ViT的无监督工业异常检测模型汇总

基于ViT的无监督工业异常检测模型汇总 论文1&#xff1a;VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization&#xff08;2021&#xff09;1.1 主要思想1.2 系统框架 论文2&#xff1a;Inpainting Transformer for Anomaly Detection&#xf…...

数据库管理-第258期 23ai:Oracle Data Redaction(20241104)

数据库管理258期 2024-11-04 数据库管理-第258期 23ai&#xff1a;Oracle Data Redaction&#xff08;20241104&#xff09;1 简介2 应用场景与有点3 多租户环境4 特性与能力4.1 全数据编校4.2 部分编校4.3 正则表达式编校4.4 随机编校4.5 空值编校4.6 无编校4.7 不同数据类型上…...

运放进阶篇-多种波形可调信号发生器-产生方波-三角波-正弦波

引言&#xff1a;前几节我们已经说到硬件相关基础的电路&#xff0c;以及对于运放也讲到了初步的理解&#xff0c;特别是比较器的部分&#xff0c;但是放大器的部分我们对此并没有阐述&#xff0c;在这里通过实例进行理论结合实践的学习。而运放真正的核心&#xff0c;其实就是…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...