pytorch torch.tile用法
指定各维度分别重复多少次
tile 是 PyTorch 中用于重复张量的函数。它可以沿指定的维度重复张量的元素。以下是一个示例代码,展示 tile 的用法:
import torch# 创建一个张量
weight_hh = torch.tensor([[1, 2], [3, 4]])# 假设批量大小为3
bs = 3# 使用 unsqueeze 在第0维度增加一个维度,然后使用 tile 沿第0维度重复 bs 次
w_hh_batch = weight_hh.unsqueeze(0).tile(bs, 1, 1)print("原始张量:")
print(weight_hh)
print("增加维度并重复后的张量:")
print(w_hh_batch)
在这个示例中:
weight_hh是一个形状为[2, 2]的张量。weight_hh.unsqueeze(0)在第0维度增加一个维度,使其形状变为[1, 2, 2]。tile(bs, 1, 1)沿第0维度重复bs次(这里bs为3),使其形状变为[3, 2, 2]。
原始张量:
tensor([[1, 2],[3, 4]])
增加维度并重复后的张量:
tensor([[[1, 2],[3, 4]],[[1, 2],[3, 4]],[[1, 2],[3, 4]]])
这样,w_hh_batch 就是一个形状为 [3, 2, 2] 的张量,其中每个批次都包含原始的 weight_hh 张量
相关文章:
pytorch torch.tile用法
指定各维度分别重复多少次 tile 是 PyTorch 中用于重复张量的函数。它可以沿指定的维度重复张量的元素。以下是一个示例代码,展示 tile 的用法: import torch# 创建一个张量 weight_hh torch.tensor([[1, 2], [3, 4]])# 假设批量大小为3 bs 3# 使用 …...
实战项目:通过自我学习让AI学习五子棋 - 1 - 项目定义
项目介绍 五子棋是一种博弈游戏。在棋盘上黑子和白子交替落子,先于在任何方向上将至少五个棋子连在一起的一方获胜。在我们这个项目中我们尝试使用自学习的方法训练出一套走五子棋的算法。 这个项目本身并无特别大的实用价值。我们的目的在于: 尝试自…...
统信UOS开发环境支持Electron
全面支持Electron开发环境,同时还提供了丰富的开发工具和开发资源,进一步提升工作效率。 文章目录 一、环境部署1. Electron应用开发介绍2. Electron开发环境安装安装Node.js和npm安装electron环境配置二、代码示例Electron开发案例三、常见问题一、环境部署 1. Electron应用…...
2024.11.09【BUG报错】| Fastuniq “Error in Reading pair-end FASTQ sequence!”解决方案
解决 Fastuniq 中“Error in Reading pair-end FASTQ sequence!”报错的指南 在使用 Fastuniq 进行高通量测序数据分析时,用户可能会遇到“Error in Reading pair-end FASTQ sequence!”的错误提示。这通常表明在读取配对的 FASTQ 序列时出现了问题。以下是一些可能…...
k8s组件原理
文章目录 1、kubernetes控制平面组件1、kube-apiserver2、etcd3、controller-manager4、schedule 2、node组件1、kubelet2、container runtime3、kube-proxy 3、附加组件1、kubedns2、dashboard 4、创建pod的原理 1、kubernetes控制平面组件 1、kube-apiserver 是公开kubernete…...
0基础跟德姆(dom)一起学AI 深度学习02-Pytorch基本使用
1 基本介绍 (1)什么是Pytorch? PyTorch是一个开源机器学习和深度学习框架。PyTorch 允许您使用 Python 代码操作和处理数据并编写深度学习算法,能够在强大的GPU加速基础上实现张量和动态神经网络。 PyTorch是一个基于 Python 的科学计算包…...
九州未来再度入选2024边缘计算TOP100
随着数智化转型的浪潮不断高涨,边缘计算作为推动各行业智能化升级的重要基石,正在成为支持万物智能化的关键点。近日,德本咨询(DBC)联合《互联网周刊》(CIW)与中国社会科学院信息化研究中心(CIS),共同发布《2024边缘计算TOP100》榜…...
《物理化学学报》
《物理化学学报》主要刊载化学学科物理化学领域具有原创性实验和基础理论研究类文章。《物理化学学报》的办刊宗旨是引领物理化学前沿、服务国家战略需求,坚持正确的办刊方针,以促进学术交流及本学科发展为已任,为发现和培养科技人才服务&…...
【数据集】【YOLO】【目标检测】树木倒塌识别数据集 9957 张,YOLO道路树木断裂识别算法实战训练教程!
一、数据集介绍 【数据集】树木倒塌识别数据集 9957 张,目标检测,包含YOLO/VOC格式标注。 数据集中包含2种分类:{0: fallen_tree},代表倒塌或者断裂的树木。 数据集来自国内外图片网站和视频截图; 可用于无人机树木…...
iOS 18.2 六大新功能外媒實測|ChatGPT進化版SIRI、自製Genmoji
iOS 18.2 測試版再次帶來備受矚目的功能,當中包括 Image Playground、Genmoji,以及很多果迷都期待已久的 Siri與ChatGPT 的整合。外媒實測這些新功能的實際效果和操作體驗,發現當中有不少令人滿意的地方。 1)Image Playground-圖像…...
简单介绍一下mvvm mvc mvp以及区别、历史
MVC(Model - View - Controller) 因MVC架构的灵活性,架构图形式很多,仅供参考 历史: MVC 是最早出现的软件架构模式之一,其历史可以追溯到 20 世纪 70 年代,最初被用于 Smalltalk - 80 环境。…...
达梦8-达梦数据实时同步软件(DMHS)配置-Oracle-DM8
1、安装环境 源端目的端IP地址192.168.6.111192.168.6.110系统版本Red Hat 6.4Kylin v10数据库版本Oracle11g达梦 v8系统用户Oracledmdba字符集MERICAN_AMERICA.AL32UTF8UTF-8端口15215236实例名PRODDMSERVER数据库软件目录/u01/app/oracle/opt/dmdbmsDMHS安装目录/u01/dmhs/o…...
mysql常见死锁的分析
概念: 死锁是指两个或多个事务在数据库操作过程中相互等待对方释放资源,而导致无法继续执行的现象。在 MySQL 中,死锁是较为常见的问题,特别是在高并发环境中。 一、识别死锁 当 MySQL 检测到死锁时,会自动中止其中一个事务&am…...
Go Energy 跨平台(GUI)应用编译和安装包制作
构建打包 energy cli 平台介绍描述windowNSIS安装包制作工具可通过 energy cli 安装linuxdpkg 命令系统自带macosenergy 仅生成 xxx.app系统自带 安装包制作 config/energy_[os].json是初始化应用时自动生成的应用配置文件,在编译和制作应用安装包时使用 Windows…...
众测遇到的一些案列漏洞
文章中涉及的敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打码处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任,一旦造成后果请自行…...
大华乐橙设备私有平台EasyCVR视频设备轨迹回放平台支持哪些摄像机?摄像机如何选型?
在现代安全监控系统中,视频监控设备扮演着至关重要的角色。视频设备轨迹回放平台EasyCVR以其卓越的兼容性和灵活性,支持接入多种品牌和类型的摄像机。这不仅为用户提供了广泛的选择空间,也使得视频监控系统的构建和管理变得更加高效和便捷。本…...
实战攻略 | ClickHouse优化之FINAL查询加速
【本文作者:擎创科技资深研发 禹鼎侯】 查询时为什么要加FINAL 我们在使用ClickHouse存储数据时,通常会有一些去重的需求,这时候我们可以使用ReplacingMergeTree引擎。这个引擎允许你存储重复数据,但是在merge的时候会根据order …...
5G NR gNB 逻辑架构及其功能拆分选项
5G NR gNB 逻辑架构及其功能拆分选项 中央单元 (CU) 和分布式单元功能拆分选项RAN 分体架构的优势在哪里使用哪个拆分函数?参考: 5G NR gNB Logical Architecture and It’s Functional Split OptionsCentral Unit (CU) and Distributed Unit Functional…...
PyQt入门指南四十六 性能优化策略
在PyQt应用程序中,性能优化是一个重要的考虑因素,尤其是在处理大型数据集或复杂图形界面时。以下是一些常见的性能优化策略: 1. 使用延迟加载(Lazy Loading) 延迟加载是一种优化技术,只在需要时加载资源。…...
【RMA】基于知识注入和模糊学习的多模态歧义分析
abstract 多模态情感分析(MSA)利用互补的多模态特征来预测情感极性,主要涉及语言、视觉和音频三种模态。现有的多模态融合方法主要考虑不同模态的互补性,而忽略了模态之间的冲突所导致的歧义(即文本模态预测积极情绪&…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
