当前位置: 首页 > news >正文

【机器学习】均方误差根(RMSE:Root Mean Squared Error)

均方误差根(Root Mean Squared Error,RMSE)是机器学习和统计学中常用的误差度量指标,用于评估预测值与真实值之间的差异。它通常用于回归模型的评价,以衡量模型的预测精度。

RMSE的定义与公式

给定预测值 \hat{y}_i 和实际值 y_i,均方误差根的公式如下:

\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}

其中:

  • n 是数据点的数量。
  • \hat{y}_i 是模型的预测值。
  • y_i 是真实值。

RMSE的计算步骤

  1. 求误差:计算预测值 y^i和实际值 yi之间的差值。
  2. 平方误差:将每个误差进行平方,得到正值,以消除正负误差的抵消影响。
  3. 求均值:将所有平方误差求和后,除以样本总数 n,得到均方误差(MSE)。
  4. 开方:对均方误差开平方根,得到 RMSE。

RMSE的性质和意义

  • 衡量误差大小:RMSE值越小,表明预测值与真实值越接近。
  • 单位一致:由于开平方根,RMSE的单位与原始数据的单位相同,便于解释。
  • 对大误差敏感:RMSE对大误差更敏感,因为平方放大了误差的影响,因此,RMSE在含有较多异常值的数据集中可能会偏高。

RMSE在机器学习中的应用

RMSE广泛用于评估回归模型,如线性回归、支持向量机回归、决策树回归等。它帮助分析模型的误差分布,找出需要改进的地方。

Python 实现均方误差根 (RMSE) 的计算

可以使用 Python 实现均方误差根 (RMSE) 的计算。以下是简单的代码示例:

import numpy as npdef rmse(y_true, y_pred):return np.sqrt(np.mean((y_pred - y_true) ** 2))# 示例
y_true = np.array([3, -0.5, 2, 7])
y_pred = np.array([2.5, 0.0, 2, 8])result = rmse(y_true, y_pred)
print("RMSE:", result)

说明

  1. y_true 是真实值数组。
  2. y_pred 是预测值数组。
  3. np.mean((y_pred - y_true) ** 2) 计算均方误差 (MSE)。
  4. np.sqrt(...) 取平方根得到 RMSE。

运行此代码将输出 RMSE 的结果。

图解 RMSE

均方误差根 (RMSE) 是回归分析中用来度量预测值和真实值之间偏差的指标。让我们从图解的角度直观理解 RMSE 的计算过程以及它在误差评估中的作用。

这张图展示了真实值与预测值的关系,以及每个点之间的误差(用灰色虚线表示)。图中蓝线代表真实值,而红色交叉点代表预测值。RMSE 被计算为这些误差的平方平均值的平方根,用来量化预测值与真实值的整体偏差程度。

在这个例子中,RMSE 值越小表示模型预测越准确。如果所有红色点都紧贴在蓝线上,RMSE 会接近 0,表示预测非常精确。

import numpy as np
import matplotlib.pyplot as plt# Generate sample data for illustration
np.random.seed(0)
x = np.linspace(0, 10, 10)                   # Independent variable (e.g., input feature)
y_true = 2 * x + 1                           # True relationship (e.g., ground truth values)
y_pred = y_true + np.random.normal(0, 2, 10) # Predicted values with random noise# Calculate RMSE
rmse_value = np.sqrt(np.mean((y_pred - y_true) ** 2))# Plotting the true vs. predicted values with errors
plt.figure(figsize=(10, 6))
plt.plot(x, y_true, label="True Values", color="blue", marker='o')
plt.plot(x, y_pred, label="Predicted Values", color="red", marker='x')
plt.vlines(x, y_true, y_pred, colors='gray', linestyles='dotted', label='Errors')# Adding text and labels
plt.xlabel("x")
plt.ylabel("y")
plt.title(f"Illustration of RMSE (Root Mean Squared Error)\nRMSE = {rmse_value:.2f}")
plt.legend()
plt.grid(True)
plt.show()
  • 绘制实际值和预测值的散点图

    • 在图中,我们将真实值 y 和预测值 \hat{y}​ 分别表示为点。假设我们有几个数据点,每个点都有一个真实值和一个预测值。
  • 误差的可视化

    • 对于每个数据点,计算预测值与真实值之间的差(误差),可以用垂直线段表示每对真实值和预测值之间的距离。
    • 例如,对于数据点 i,误差为 e_i = \hat{y}_i - y_i​。
  • 平方误差

    • 将每个误差平方,即 e_i^2​,这样可以确保所有误差均为正值。此步骤可以通过加粗或更长的线条来表示更大的误差平方。
  • 均方误差

    • 计算所有平方误差的平均值,这表示整体误差的平方平均水平。
  • 取平方根

    • 对均方误差 (MSE) 取平方根,得到 RMSE。这一步可以用直观的距离感来说明,即 RMSE 反映了预测值和真实值之间的平均距离。

RMSE 解释的图示要点

  • 误差增大效应:在图中,偏离实际值较大的点会显著影响 RMSE,因为平方会放大误差。
  • 越接近0越准确:图中 RMSE 越小,代表预测值越接近真实值;若 RMSE 为 0,则预测值完全等于真实值。

通过这样的图示,可以清楚看到 RMSE 对模型准确性和误差分布的敏感性。

相关文章:

【机器学习】均方误差根(RMSE:Root Mean Squared Error)

均方误差根(Root Mean Squared Error,RMSE)是机器学习和统计学中常用的误差度量指标,用于评估预测值与真实值之间的差异。它通常用于回归模型的评价,以衡量模型的预测精度。 RMSE的定义与公式 给定预测值 和实际值 …...

[含文档+PPT+源码等]精品基于springboot实现的原生Andriod广告播放系统

基于Spring Boot实现的原生Android广告播放系统背景,主要可以从以下几个方面进行阐述: 一、市场需求与背景 移动互联网的快速发展: 随着移动互联网技术的不断进步,智能手机已成为人们日常生活中不可或缺的一部分。人们越来越多地…...

【机器学习】均方误差(MSE:Mean Squared Error)

均方误差(Mean Squared Error, MSE)是衡量预测值与真实值之间差异的一种方法。在统计学和机器学习中,MSE 是一种常见的损失函数,用于评估模型的预测准确性。 均方误差的定义 假设有一组真实值 ​ 和模型预测的对应值 ​。均方误…...

融合虚拟与现实,AR Engine为用户提供沉浸式交互体验

当今的应用市场中,传统的应用产品已经难以完全满足消费者的多样化需求。为了在竞争激烈的市场中脱颖而出,企业需要深入洞察用户需求,提供个性化的服务体验和差异化的产品创新,以吸引并留住消费者。 比如,购物类App通过…...

python | xmltodict,一个非常厉害的 关于XML数据 Python 库!

本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。 原文链接:xmltodict,一个非常厉害的 Python 库! 大家好,今天为大家分享一个非常厉害的 Python 库 - xmltodict。 Github地址&am…...

教程:FFmpeg结合GPU实现720p至4K视频转换

将一个 720p 的视频放大编码到 4K,这样的视频处理在很多业务场景中都会用到。很多视频社交、短视频、视频点播等应用,都会需要通过服务器来处理大量的视频编辑需求。 本文我们会探讨一下做这样的视频处理,最低的 GPU 指标应该是多少。利用开源…...

MeterSphere接口自动化-ForEach循环

接口自动化场景:一个接口根据不同的参数取值来运行测试,本场景中只有一个参数来去不同值。举例如下: https:://test.csdn/query?placementList1接口,测试id1,2,3时,断言接口返回的data数据都有返回。(当然…...

ssm074应急资源管理系统+jsp(论文+源码)_kaic

毕 业 设 计(论 文) 题目:应急资源管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本应急资源管理系统…...

怎么对 PDF 添加权限密码或者修改密码-免费软件分享

序言 目前市面上有关PDF处理的工具有很多,不过绝大多数的PDF处理工具都需要付费使用,且很多厂商甚至连试用的机会也不给用户,偶有试用的,其试用版的条件也极为苛刻,比如只能处理前两页,或者只能处理非常小的…...

LVSM: A LARGE VIEW SYNTHESIS MODEL WITH MINIMAL 3D INDUCTIVE BIAS 论文解读

目录 一、概述 二、相关工作 1、新视角合成 2、优化3D表示 3、可泛化的前馈方法 三、LVSM 1、总体结构 2、encoder-decoder 3、decoder-only 4、Loss 一、概述 该论文提出大视角合成模型LVSM,基于Transformer方法,用于场景中或对象级层次从稀…...

7.《双指针篇》---⑦三数之和(中等偏难)

题目传送门 方法一:双指针 1.新建一个顺序表用来返回结果。并排序数组。 2.for循环 i 从第一个数组元素遍历到倒数第三个数。 3.如果遍历过程中有值大于0的则break; 4.定义左右指针,以及target。int left i 1, right n - 1; int target -nums[i];…...

鸿蒙ArkTS中的布局容器组件(Scroll、List、Tabs)

1、Scroll组件 Scroll组件是一个可滚动的容器组件,用于在子组件的布局尺寸超过父组件尺寸时提供滚动功能。它允许在其内部容纳超过自身显示区域的内容,并通过滚动机制来查看全部内容。这对于显示大量信息(如长列表、长篇文本或大型图像等&…...

mybatis连接PGSQL中对于json和jsonb的处理

pgsql数据库表字段设置了jsonb格式;在java的实体里使用String或者对象转换会一直提示一个错误: Caused by: org.postgresql.util.PSQLException: ERROR: column "xx" is of type jsonb but expression is of type character varying 需要加一…...

Redis 权限控制(ACL)|ACL 命令详解、ACL 持久化

官网文档地址:https://redis.io/docs/latest/operate/oss_and_stack/management/security/acl/ 使用版本:Redis7.4.1 什么是 ACL? ACL(Access Control List),权限控制列表,是 Redis 提供的一种…...

内网学习一:windows基础

工作组介绍 按照不同的计算机功能或工作部门将计算机列入不同的工作组。要是想访问某一个工作组的资源 只需要双击该部门的工作组,就可以看到该组内的所有计算机。 目的:在大型网络中,方便管理员去管理设备 加入工作组 右击计算机图标---…...

编译工具与文件学习(一)-YAML、repos、vcstoolcolcon

YAML YAML(YAML Ain’t Markup Language)是一种人类可读的数据序列化格式,常用于配置文件、数据交换和存储结构化数据。YAML 的设计目标是简洁、易读,并且能够表示复杂的数据结构。 YAML 文件的基本语法 基本结构: Y…...

使用 HuggingFace 提供的 Elasticsearch 托管交叉编码器进行重新排名

作者:来自 Elastic Jeff Vestal 了解如何使用 Hugging Face 的模型在 Elasticsearch 中托管和执行语义重新排序。 在这篇简短的博文中,我将向你展示如何使用 Hugging Face 中的模型在搜索时在你自己的 Elasticsearch 集群中执行语义重新排序。我们将使用…...

CKA认证 | Day1 k8s核心概念与集群搭建

第一章 Kubernetes 核心概念 1、主流的容器集群管理系统 容器编排系统: KubernetesSwarmMesos Marathon 2、Kubernetes介绍 Kubernetes是Google在2014年开源的一个容器集群管理系统,Kubernetes简称K8s。 Kubernetes用于容器化应用程序的部署&#x…...

[极客大挑战 2019]PHP 1

[极客大挑战 2019]PHP 1 审题 猜测备份在www.zip中,输入下载文件。 知识点 反序列化 解题 查看代码 看到index.php中包含了class.php,直接看class.php中的代码 查看条件 当usernameadmin,password100时输出flag 构造反序列化 输入select中&#…...

【c++丨STL】vector模拟实现

🌟🌟作者主页:ephemerals__ 🌟🌟所属专栏:C、STL 目录 前言 一、vector底层刨析 二、模拟实现 1. 属性、迭代器以及函数声明 2. 功能实现 交换两个容器的内容 构造函数 拷贝构造 赋值重载 析构…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...