当前位置: 首页 > news >正文

为何选择Spring AI Alibaba开发智能客服平台?

0 前言

本文来看如何使用Spring AI Alibaba构建Agent应用。

1 需求

智能客服平台,可帮助用户完成机票预定、问题解答、机票改签、取消等动作,具体要求:

  • 基于 AI 大模型与用户对话,理解用户自然语言表达的需求
  • 支持多轮连续对话,能在上下文中理解用户意图
  • 理解机票操作相关的术语与规范并严格遵守,如航空法规、退改签规则等
  • 在必要时可调用工具辅助完成任务

2 技术架构

2.1 接入AI大模型

不过是用 Spring Boot 开发普通 Java 应用,要能持续接收用户提问,解决机票相关问题,叫它Agent应用是因为这应用可与 AI 交互,由 AI 帮助应用理解用户问题并为用户做决策,简化分解后的架构:

2.2 利用RAG增加机票退改签规则

应用由 AI 模型理解用户问题,决策下一步动作、驱动业务流程。但任一通用大模型都能解决机票相关问题吗?依赖模型的决策是可靠的吗?如有用户提出机票改签的诉求,模型一定能很好理解用户意图,没疑问。但:

  • 它咋知当前用户符不符合退票规则?毕竟每个航空公司改签规则都不同
  • 它咋知改签手续费的规定?在这样一个可能带来经济纠纷、法律风险的应用场景下,AI模型必须要知道改签规则的所有细节,并逐条确认用户信息复合规则后,才能最终作出是否改签的决策

显然,单纯依赖 AI 模型本身不能满足需求,就要用到RAG模式。通过 RAG 将机票退改签相关领域知识输入给应用和 AI 模型,让 AI 结合这些规则与要求辅助决策,增加 RAG 后的架构:

有了RAG,应用才真正成为智能化的机票问题专家,就像一个经公司业务培训的客服代表,既能人性化与用户对话,又能根据规则引导用户行为。

2.3 使用Function Calling执行业务动作

AI Agent可帮应用理解用户需求并决策,但没法代替应用完成决策执行,决策执行还是要由应用自己完成,这点和传统应用无区别,不论智能化的还是预先编排好的应用,都是要由应用本身去调用函数修改数据库记录实现数据持久化。

通过 Spring AI 框架,可将模型的决策转换为对某个具体函数的调用,从而完成机票的最终改签或者退票动作,将用户数据写入数据库,即Function Calling模式。

2.4 使用 Chat Memory 增加多轮对话能力

大模型是无状态的,它看到的只有当前这轮对话的内容。因此若要支持多轮对话效果,需应用每次都将之前对话上下文保留,并与最新问题一并作为 prompt 发送给模型。这时,我们可以利用 Spring AI Alibaba 提供的内置 Conversation Memory 支持,方便的维护对话上下文。

至此,让我们总结在这个智能客服平台应用使用到的

3 Spring AI Alibaba 核心能力

  1. 基本模型对话能力,通过 Chat Model API 与通义模型交互
  2. Prompt 管理能力
  3. Chat Memory 聊天记忆,支持多轮对话
  4. RAG、Vector Store,机票预定、改签、退票等相关规则

4 使用 ChatClient 完成编码

Spring AI Alibaba 不止提供了以上原子能力抽象,还提供了高阶 “智能体” API 抽象 ChatClient,让我们可以非常方便的使用流式 Fluent API 把多个组件组装起来,成为一个AI Agent。

具体使用:

this.chatClient = modelBuilder.defaultSystem("""您是“Funnair”航空公司的客户聊天支持代理。请以友好、乐于助人且愉快的方式来回复。您正在通过在线聊天系统与客户互动。在提供有关预订或取消预订的信息之前,您必须始终从用户处获取以下信息:预订号、客户姓名。在询问用户之前,请检查消息历史记录以获取此信息。在更改预订之前,您必须确保条款允许这样做。如果更改需要收费,您必须在继续之前征得用户同意。使用提供的功能获取预订详细信息、更改预订和取消预订。如果需要,可以调用相应函数调用完成辅助动作。请讲中文。今天的日期是 {current_date}.""").defaultAdvisors(new PromptChatMemoryAdvisor(chatMemory), // Chat Memorynew VectorStoreChatMemoryAdvisor(vectorStore)),new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults()), // RAGnew LoggingAdvisor()).defaultFunctions("getBookingDetails", "changeBooking", "cancelBooking") // FUNCTION CALLING.build();

这样ChatClient就为我们屏蔽了所有与大模型交互的细节,只需要把ChatClient注入常规的 Spring Bean 就可以为我们的机票应用加入智能化能力了。

5 运行效果

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM Agent应用开发

  • 区块链应用开发

  • 大数据开发挖掘经验

  • 推荐系统项目

    目前主攻市级软件项目设计、构建服务全社会的应用系统。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

相关文章:

为何选择Spring AI Alibaba开发智能客服平台?

0 前言 本文来看如何使用Spring AI Alibaba构建Agent应用。 1 需求 智能客服平台,可帮助用户完成机票预定、问题解答、机票改签、取消等动作,具体要求: 基于 AI 大模型与用户对话,理解用户自然语言表达的需求支持多轮连续对话…...

HiveSQL 中判断字段是否包含某个值的方法

HiveSQL 中判断字段是否包含某个值的方法 在 HiveSQL 中,有时我们需要判断一个字段是否包含某个特定的值。下面将介绍几种常用的方法来实现这个功能。 一、创建示例表并插入数据 首先,我们创建一个名为employee的表,并插入一些示例数据&am…...

Nginx简易配置将内网网站ssh转发到外网

声明:本内容仅供交流学习使用,部署网站上线还需要根据有关规定申请域名以及备案。 背景 在内网的服务器有一个运行的网页,现使用ssh反向代理,将它转发到外网的服务器。 但是外网的访问ip会被ssh反向代理拦截 所以使用Nginx进行…...

【go从零单排】error错误处理及封装

🌈Don’t worry , just coding! 内耗与overthinking只会削弱你的精力,虚度你的光阴,每天迈出一小步,回头时发现已经走了很远。 📗概念 在 Go 语言中,error 是一个内置的接口类型,用于表示错误情…...

全平台设置jetbrains mono字体

相信大家都用过IDEA,推荐使用开发字体:jetbrains mono 本地下载的位置(记一下)后续需要打开安装 本地下载的:E:\download\font\jetbrainsmono\JetBrainsMono-2.304\fonts\ttf 官网上下载:https://www.jetbr…...

高校体育场管理系统+ssm

摘 要 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,高校体育场管理系统被用户普遍使用,为方便用户…...

Python学习从0到1 day27 第三阶段 Spark ② 数据计算Ⅰ

人总是会执着于失去的,而又不珍惜现在所拥有的 —— 24.11.9 一、map方法 PySpark的数据计算,都是基于RDD对象来进行的,采用依赖进行,RDD对象内置丰富的成员方法(算子) map算子 功能:map算子…...

Python学习从0到1 day27 第三阶段 Spark ③ 数据计算 Ⅱ

目录 一、Filter方法 功能 语法 代码 总结 filter算子 二、distinct方法 功能 语法 代码 总结 distinct算子 三、SortBy方法 功能 语法 代码 总结 sortBy算子 四、数据计算练习 需求: 解答 总结 去重函数: 过滤函数: 转换函数: 排…...

腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南

腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南 摘要: 本文将详细介绍如何部署腾讯混元3D模型Hunyuan3D-1.0,并针对不同硬件配置提供优化的推理方案。我们将探讨如何在有限的GPU内存下,通过调整配置来优化模型的推理性能。 1. 项目概览 腾…...

基于 PyTorch 从零手搓一个GPT Transformer 对话大模型

一、从零手实现 GPT Transformer 模型架构 近年来,大模型的发展势头迅猛,成为了人工智能领域的研究热点。大模型以其强大的语言理解和生成能力,在自然语言处理、机器翻译、文本生成等多个领域取得了显著的成果。但这些都离不开其背后的核心架…...

IDEA构建JavaWeb项目,并通过Tomcat成功运行

目录 一、Tomcat简介 二、Tomcat安装步骤 1.选择分支下载 2.点击下载zip安装包 3.解压到没有中文、空格和特殊字符的目录下 4.双击bin目录下的startup.bat脚本启动Tomcat 5.浏览器访问Tomcat 6.关闭Tomcat服务器 三、Tomcat目录介绍 四、WEB项目的标准结构 五、WEB…...

Mac解决 zsh: command not found: ll

Mac解决 zsh: command not found: ll 文章目录 Mac解决 zsh: command not found: ll解决方法 解决方法 1.打开bash_profile 配置文件vim ~/.bash_profile2.在文件中添加配置:alias llls -alF键盘按下 I 键进入编辑模式3. alias llls -alF添加完配置后,按…...

库打包工具 rollup

库打包工具 rollup 摘要 **概念:**rollup是一个模块化的打包工具 注:实际应用中,rollup更多是一个库打包工具 与Webpack的区别: 文件处理: rollup 更多专注于 JS 代码,并针对 ES Module 进行打包webpa…...

unplugin-vue-components 库作用

一、基本概念与用途 1. 自动导入 Vue 组件 unplugin - vue - components是一个用于 Vue 项目的插件,主要功能是自动导入组件,从而减少在 Vue 组件中手动导入其他组件的繁琐过程。 在大型 Vue 项目中,往往会有许多自定义组件或者第三方组件…...

LinkedList和单双链表。

java中提供了双向链表的动态数据结构 --- LinkedList,它同时也实现了List接口,可以当作普通的列表来使用。也可以自定义实现链表。 单向链表:一个节点本节点数据下个节点地址 给定两个有序链表的头指针head1和head2,打印两个链表…...

AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例

文末有免费工具可在线体验,或者网络搜索关键词“思通开源AI能力平台” 一、扫描与图像预处理 技术实现过程 在纸质档案的数字化过程中,首先需要使用高精度扫描仪对纸质文档进行扫描,生成高清的数字图像。这一步骤是整个OCR流程的基础&#xf…...

Spring boot 读模块项目升级为spring cloud 项目步骤以及问题

1.结构说明 bean 模块 ,public 模块, client 模块, erp模块,system 主模块。 2.环境说明以及pom 原本环境 新环境 mysql 5.7 -------------- mysql 8.0 maven 3.9.6 jdk 8 -----------…...

时序数据库之influxdb和倒排索引以及LSM-TREE

一、时序数据库的特点 1、时序数据库用作打点,用来做监控使用,属于写多读少的场景,而且由于时间不可逆,几乎不可能出现更新的操作。而且监控数据一般只会查询最近几分钟数据,冷热数据查询频率非常明显。因此非常贴合ES…...

如何避免消息的重复消费问题?(消息消费时的幂等性)

如何避免消息的重复消费问题 1、 消息的幂等性1.1、概念1.2、产生业务场景 2、全局唯一IDRedis解决消息幂等性问题2.1、application.yml配置文件2.2、生产者发送消息2.3、消费者接收消息2.4、pom.xml引入依赖2.5、RabbitConfig配置类2.6、启动类2.7、订单对象2.8、测试 1、 消息…...

【Java SE】类与对象

现实世界中,随处可见的一个事物实体就是对象,而类就是同一类事物(或对象)的统称,由一个类构造对象的过程称为创建这个类的一个实例(instance),即: 类(class&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

docker 部署发现spring.profiles.active 问题

报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...