音频采样数据格式
音频信号在模拟到数字转换时,会涉及到多个关键参数,如采样率、位深度、通道数等。下面是常见的音频采样数据格式及其相关概念:
1. 采样率 (Sample Rate)
采样率指的是每秒钟对音频信号进行采样的次数,单位为赫兹 (Hz)。常见的值如下:
- 44.1 kHz:常用于音频CD和大多数音乐文件格式(如WAV、MP3)。
- 48 kHz:常用于专业音频录制、电影和视频音频处理。
- 96 kHz、192 kHz:常用于高保真音频(Hi-Fi)或专业录音应用。
为了能够准确地重现模拟音频信号中的所有频率,采样率必须遵循 奈奎斯特定理(Nyquist Theorem),即采样率必须至少是信号中最高频率的两倍。这是因为我们只能重建出采样频率以下的信号,超过采样频率一半的信号(即奈奎斯特频率)会出现混叠现象,导致音频失真。
44.1 kH采样率的由来
早期的数码录音就是一个PCM编码器加录像机,所以,数据音频信号是在录像机(录像带)中存储的。PAL制式的录像机每帧有625条扫描线,但实际可用的扫描线为588条,由于隔行扫描,扫描线减半,就成了294条。每条扫描线可以存储3个采样点的信息,场频为50Hz,因而采样点数量为294×50×3 = 44 100。
2. 位深度 (Bit Depth)
位深度指的是每个采样点的数值精度,即每个采样值所用的比特数。常见的值如下:
- 16位:用于CD音质(动态范围为96 dB)。
- 24位:用于高质量录音和制作,通常用于专业音频处理。
- 32位浮动:用于数字音频处理软件中的浮动点格式,提供极高的动态范围。
3. 通道数 (Channels)
指的音频信号中的声道数。如下图,当我们坐在中间时,不同声道的声音让我们感觉它们来自不同的方向。

相关文章:
音频采样数据格式
音频信号在模拟到数字转换时,会涉及到多个关键参数,如采样率、位深度、通道数等。下面是常见的音频采样数据格式及其相关概念: 1. 采样率 (Sample Rate) 采样率指的是每秒钟对音频信号进行采样的次数,单位为赫兹 (Hz)。常见的值…...
【pytorch】常用强化学习算法实现(持续更新)
持续更新常用的强化学习算法,采用单python文件实现,简单易读 2024.11.09 更新:PPO(GAE); SAC2024.11.12 更新:OptionCritic(PPOC) "PPO" import copy import time import torch import numpy as np import torch.nn as …...
DAY59||并查集理论基础 |寻找存在的路径
并查集理论基础 并查集主要有两个功能: 将两个元素添加到一个集合中。判断两个元素在不在同一个集合 代码模板 int n 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好 vector<int> father vector<int> (n, 0); // C里的一…...
Mybatis执行自定义SQL并使用PageHelper进行分页
Mybatis执行自定义SQL并使用PageHelper进行分页 基于Mybatis,让程序可以执行动态传入的SQL,而不需要在xml或者Select语句中定义。 代码示例 pom.xml 依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId&g…...
OpenCV DNN
OpenCV DNN 和 PyTorch 都是常用的深度学习框架,但它们的定位、使用场景和功能有所不同。让我们来对比一下这两个工具: 1. 框架和功能 OpenCV DNN:OpenCV DNN 模块主要用于加载和运行已经训练好的深度学习模型,支持多种深度学习…...
什么时候需要复写hashcode()和compartTo方法
在Java编程中,复写(重写)hashCode()和compareTo()方法的需求通常与对象的比较逻辑和哈希集合的使用紧密相关。但请注意,您提到的compartTo可能是一个拼写错误,正确的方法名是compareTo()。以下是关于何时需要复写这两个…...
PostgreSQL 日志文件备份
随着信息安全的建设,在三级等保要求中,要求日志至少保留半年 180 天以上。那么 PostgreSQL 如何实现这一要求呢。 我们需要配置一个定时任务,定时的将数据库日志 log 下的文件按照生成的规则将超过一定时间的日志拷贝到其它的路径下…...
2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
2023年第十三届MathorCup高校数学建模挑战赛 B题 城市轨道交通列车时刻表优化问题 原题再现: 列车时刻表优化问题是轨道交通领域行车组织方式的经典问题之一。列车时刻表规定了列车在每个车站的到达和出发(或通过)时刻,其在实际…...
数字农业产业链整体建设方案
1. 引言 数字农业产业链整体建设方案旨在通过数字化手段提升农业产业效率与质量,推动农业现代化进程。方案聚焦于资源数字化、产业数字化、全局可视化与决策智能化的实现,构建农业产业互联网平台,促进农业全流程、全产业链线上一体化发展。 …...
awk那些事儿:在awk中使用shell变量的两种方式
awk是Linux中一款非常好用的程序,可以逐行处理文件,并提供了强大的语法和函数,和grep、sed一起被称为“Linux三剑客”。 在使用awk处理文件时,有时会用到shell中定义的变量,由于在shell中变量的调用方式是通过$符号进…...
大数据面试题--kafka夺命连环问(后10问)
目录 16、kafka是如何做到高效读写? 17、Kafka集群中数据的存储是按照什么方式存储的? 18、kafka中是如何快速定位到一个offset的。 19、简述kafka中的数据清理策略。 20、消费者组和分区数之间的关系是怎样的? 21、kafka如何知道哪个消…...
智能量化交易的多样化策略与风险控制:中阳模型的应用与发展
随着金融市场的不断创新与发展,智能量化交易正逐渐成为金融投资的重要手段。中阳智能量化交易模型通过技术优势、策略优化与实时风险控制等多方面结合,为投资者提供了强有力的工具支持。本文将对中阳量化模型的技术细节、多策略组合与市场适应性进行深入…...
小皮PHP连接数据库提示could not find driver
最近遇到一个奇怪的问题,我的小皮上安装的8.0.2版本的php连接数据库正常。下载使用8.2.9时,没有php.ini,把php-development.ini改成 php.ini后,就提示could not find driver。 网上查了说把php.ini里的这几个配置打开,我也打开了&…...
2024.11.13(一维数组相关)
思维导图 1> 提示并输入一个字符串,统计该字符串中大写字母、小写字母、数字字符、空格字符的个数并输出 2> 提示并输入一个字符串,将该字符串中的所有字母挑选到一个新数组中,将所有的数字字符挑选到另一个新数组中。并且将数字字符对…...
豆包MarsCode算法题:数组元素之和最小化
数组元素之和最小化 问题描述思路分析分析思路解决方案 参考代码(Python)代码分析1. solution 函数2. 计算 1 2 3 ... n 的和3. 乘以 k 得到最终的数组元素之和4. 主程序(if __name__ __main__:)代码的时间复杂度分析&#x…...
Hbase Shell
一、启动运行HBase 首先登陆SSH,由于之前在Hadoop的安装和使用中已经设置了无密码登录,因此这里不需要密码。然后,切换至/usr/local/hadoop,启动Hadoop,让HDFS进入运行状态,从而可以为HBase存储数据&#…...
激活函数解析:神经网络背后的“驱动力”
神经网络中的激活函数(Activation Function)是其运作的核心组件之一,它们决定了神经元如何根据输入信号进行“激活”,进而影响整个模型的表现。理解激活函数的工作原理对于设计和优化神经网络至关重要。本篇博客将深入浅出地介绍各…...
【开源免费】基于SpringBoot+Vue.JS水果购物网站(JAVA毕业设计)
博主说明:本文项目编号 T 065 ,文末自助获取源码 \color{red}{T065,文末自助获取源码} T065,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...
推荐一款多物理场模拟仿真软件:STAR-CCM+
Siemens STAR-CCM是一款功能强大的计算流体力学(CFD)软件,由西门子公司推出。它集成了现代软件工程技术、先进的连续介质力学数值技术和卓越的设计,为工程师提供了一个全面的多物理场仿真平台。主要特点与优势:多物理场仿真、自动化与高效、高…...
React Hooks在现代前端开发中的应用
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 React Hooks在现代前端开发中的应用 React Hooks在现代前端开发中的应用 React Hooks在现代前端开发中的应用 引言 React Hooks …...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
