当前位置: 首页 > news >正文

激活函数解析:神经网络背后的“驱动力”

神经网络中的激活函数(Activation Function)是其运作的核心组件之一,它们决定了神经元如何根据输入信号进行“激活”,进而影响整个模型的表现。理解激活函数的工作原理对于设计和优化神经网络至关重要。本篇博客将深入浅出地介绍各种常见激活函数,帮助大家掌握这一基础概念。


目录

什么是激活函数?

激活函数的作用:

常见的激活函数

1. Sigmoid 函数(S型函数)

​编辑2. Tanh 函数(双曲正切函数)

​编辑

3. ReLU(Rectified Linear Unit)函数

4. Leaky ReLU 函数

5. Softmax 函数

总结


什么是激活函数?

在神经网络中,每个神经元都会接收来自前一层神经元的输入信号,这些输入信号经过加权和求和后,需要通过激活函数进行处理。激活函数的作用是决定神经元是否应该被激活,从而影响输出值。简单来说,激活函数决定了一个神经元对其输入信号的反应程度。

激活函数的作用:

  1. 非线性化:神经网络中的激活函数通常是非线性的,这使得网络能够学习和表示复杂的关系。没有非线性的激活函数,无论网络有多少层,其等价于一个简单的线性模型。
  2. 引入阈值:激活函数决定了神经元的输出值是否激活,类似于生物神经元的工作方式。
  3. 限制输出范围:激活函数可以对输出进行一定的限制,使得模型更加稳定。

常见的激活函数

接下来,我们将介绍几种常见的激活函数,并分析它们的优缺点。

1. Sigmoid 函数(S型函数)

Sigmoid 函数是最经典的激活函数之一,其数学表达式为:

\sigma (x) = \frac{1}{1+e^{-x}}

特点:

  • 输出范围:0 到 1,适用于二分类问题,输出可以被看作概率。
  • 平滑和连续:Sigmoid 函数是平滑的,且具有单调性。

缺点:

  • 梯度消失:当输入值过大或过小时,梯度几乎为 0,导致训练时梯度消失,难以进行有效学习。
  • 输出不对称:Sigmoid 的输出范围是 [0, 1],导致其在正负输入时表现不对称,可能影响模型表现。

图片示例如下:

2. Tanh 函数(双曲正切函数)

Tanh 函数是 Sigmoid 函数的改进版,其数学表达式为:

Tanh(x) = \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

特点:

  • 输出范围:-1 到 1,具有更强的对称性。
  • 平滑和连续:Tanh 函数与 Sigmoid 函数类似,具有平滑的曲线。

优点:

  • 对称性:Tanh 函数的输出范围是对称的,负数输出可以更好地表示负向激活。

缺点:

  • 梯度消失:和 Sigmoid 类似,当输入值过大或过小时,梯度接近于零,训练时容易出现梯度消失问题。

3. ReLU(Rectified Linear Unit)函数

ReLU 是目前最常用的激活函数之一,其数学表达式为:

ReLU(x)=max(0,x)

特点:

  • 输出范围:当输入大于 0 时,输出等于输入;否则输出为 0。
  • 计算简单:ReLU 函数计算非常简单,仅需要比较输入值和 0,极大提高了训练效率。

优点:

  • 避免梯度消失:由于其线性特性,当输入为正时,ReLU 的梯度为常数,避免了梯度消失问题。
  • 收敛速度快:ReLU 可以加速神经网络的收敛速度,是深度学习中最常用的激活函数。

缺点:

  • 死亡神经元问题:如果输入总是负数,神经元将“死亡”,导致其输出始终为 0,无法参与学习。

4. Leaky ReLU 函数

Leaky ReLU 是对标准 ReLU 的改进版本。其数学表达式为:

LeakyReLU(x) = \begin{cases} x & \text{ if } x>0 \\ \alpha x & \text{ if } x\leq 0 \end{cases}

其中,\alpha 是一个小的常数,通常为 0.01。

特点:

  • 输出范围:负输入不会被完全抑制,而是乘以一个小的系数 α\alphaα。
  • 避免神经元死亡:即使输入值为负,Leaky ReLU 也能提供一个很小的梯度,避免神经元“死亡”。

优点:

  • 避免死亡神经元问题:通过给负数输入提供一个小的斜率,Leaky ReLU 避免了 ReLU 中的死亡神经元问题。
  • 收敛速度快:类似于 ReLU,Leaky ReLU 也能加速训练过程。

5. Softmax 函数

Softmax 函数常用于多分类问题,其数学表达式为:


Softmax(x_i)=\frac{e^{x_i}}{\sum_j^k e^{x_j}}

特点:

  • 输出范围:Softmax 函数将输出转换为概率分布,每个输出值的范围是 (0, 1),且所有输出值之和为 1。
  • 多分类应用:常用于多分类任务的最后一层,将原始输出值转换为类别概率。

优点:

  • 概率输出:Softmax 输出的每个值可以解释为某个类别的概率,非常适合多分类问题。


总结

激活函数是神经网络中不可或缺的组成部分,它们让网络能够学习复杂的非线性关系。不同的激活函数具有不同的特点,适用于不同的任务和数据集。在实际应用中,ReLU 和其变种(如 Leaky ReLU)因其简单高效而成为深度学习中最常用的激活函数。而在多分类问题中,Softmax 函数是经典的选择。

在选择激活函数时,需要根据问题的特性以及网络结构来进行选择。希望通过本篇博客,大家能对激活函数有更清晰的认识,并在实际应用中作出更合适的选择。

相关文章:

激活函数解析:神经网络背后的“驱动力”

神经网络中的激活函数(Activation Function)是其运作的核心组件之一,它们决定了神经元如何根据输入信号进行“激活”,进而影响整个模型的表现。理解激活函数的工作原理对于设计和优化神经网络至关重要。本篇博客将深入浅出地介绍各…...

【开源免费】基于SpringBoot+Vue.JS水果购物网站(JAVA毕业设计)

博主说明:本文项目编号 T 065 ,文末自助获取源码 \color{red}{T065,文末自助获取源码} T065,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

推荐一款多物理场模拟仿真软件:STAR-CCM+

Siemens STAR-CCM是一款功能强大的计算流体力学(CFD)软件,由西门子公司推出。它集成了现代软件工程技术、先进的连续介质力学数值技术和卓越的设计,为工程师提供了一个全面的多物理场仿真平台。主要特点与优势:多物理场仿真、自动化与高效、高…...

React Hooks在现代前端开发中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 React Hooks在现代前端开发中的应用 React Hooks在现代前端开发中的应用 React Hooks在现代前端开发中的应用 引言 React Hooks …...

重学SpringBoot3-整合Quartz定时任务

更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ Quartz 是一个开源的任务调度框架,用于在应用程序中创建、管理和调度定时任务。将 Quartz 和 Spring Boot 3 结合,可以轻松实现定时任务的灵活管理…...

STM32单片机WIFI语音识别智能衣柜除湿消毒照明

实践制作DIY- GC0196-WIFI语音识别智能衣柜 一、功能说明: 基于STM32单片机设计-WIFI语音识别智能衣柜 二、功能介绍: STM32F103C系列最小系统板LCD1602显示器ULN2003控制的步进电机(柜门开关)5V加热片直流风扇紫外消毒灯DHT11…...

spring中entity的作用

在Spring框架中,特别是结合Spring Data JPA(Java Persistence API)时,Entity类用于表示数据库中的表。这些类通常用于ORM(对象关系映射),即将对象模型与关系型数据库中的表进行映射。以下是Enti…...

2019年下半年试题二:论软件系统架构评估及其应用

论文库链接:系统架构设计师论文 论文题目 对于软件系统,尤其是大规模复杂软件系统而言,软件系统架构对于确保最终系统的质量具有十分重要的意义。在系统架构设计结束后,为保证架构设计的合理性、完整性和针对性,保证系…...

网络自动化04:python实现ACL匹配信息(主机与主机信息)

目录 背景分析代码代码解读代码总体结构1. load_pattern_from_excel 函数2. match_and_append_pattern 函数3. main 函数总结 最终的效果: 今天不分享netmiko,今天分享一个用python提升工作效率的小案例:acl梳理时的信息匹配。 背景 最近同事…...

字典树介绍以及C++实现

字典树的概念 字典树(Trie),又称为前缀树或单词查找树,是一种树形数据结构,主要用于存储具有相同前缀的字符串集合。它特别适合用于词典中的单词查找、自动补全、拼写检查等应用。 字典树算法的核心思想就是每层存入…...

【C++】用红黑树封装set和map

在C标准库中,set容器和map容器的底层都是红黑树,它们的各种接口都是基于红黑树来实现的,我们在这篇文章中已经模拟实现了红黑树 ->【C】红黑树,接下来我们在此红黑树的基础上来看看如何封装set和map。 一、共用一颗红黑树 我…...

【大数据测试HDFS + Flask详细教程与实例】

大数据测试HDFS Flask 1. 环境准备安装工具安装Hadoop(以单机模式为例)安装Flask和HDFS Python客户端 2. HDFS Flask基本架构基本文件结构 3. 创建Flask应用与与HDFS交互步骤1:配置HDFS连接步骤2:构建Flask应用 4. 创建前端界面…...

高级java每日一道面试题-2024年10月31日-RabbitMQ篇-RabbitMQ中vhost的作用是什么?

如果有遗漏,评论区告诉我进行补充 面试官: RabbitMQ中vhost的作用是什么? 我回答: 在Java高级面试中,关于RabbitMQ中vhost(虚拟主机)的作用是一个重要且常见的考点。以下是对vhost的详细解释: 一、vhost的基本概念 vhost&am…...

【日常记录-Java】代码配置Logback

1. 简介 在Logback中,推荐使用配置文件(如logback.xml或logback-spring.xml)来设置日志记录的行为。但在实际应用中,会有动态配置logback的需求。此时可通过编程的方式直接操作LoggerContext以及相关的Logger、Appender、Encoder等…...

HTTP常见的请求头有哪些?都有什么作用?在 Web 应用中使用这些请求头?

HTTP 请求头(Request Headers)用于在 HTTP 请求中携带额外的信息,帮助服务器更好地处理请求。以下是一些常见的 HTTP 请求头及其作用: 常见请求头及其作用 1. Accept 作用:告知服务器客户端可以接受的内容类型。示例…...

电信数据清洗案例:利用MapReduce实现高效数据预处理

电信数据清洗案例:利用MapReduce实现高效数据预处理 在大数据时代,电信行业积累了大量的用户通话、短信、上网等行为数据。在数据分析和机器学习模型训练前,对这些数据进行清洗是至关重要的一步。MapReduce 是一种高效的数据处理模型&#x…...

react 中 FC 模块作用

React.FC 是一个泛型类型,用于定义函数组件的类型 一、类型定义和代码可读性 1. 明确组件类型 使用React.FC定义一个组件时,使得组件的输入(props)和输出(返回的 React 元素)都有明确的类型定义。 impo…...

多模态大模型(1)--CLIP

CLIP(Contrastive Language-Image Pre-training)模型是一种多模态预训练神经网络,由OpenAI在2021年发布。它通过对比学习的方式,将图像和文本映射到同一个向量空间中,从而实现跨模态的检索和分类。下面介绍其基础功能&…...

opencv入门学习总结

opencv学习总结 不多bb,直接上代码!!! 案例一: import cv2 # 返回当前安装的 OpenCV 库的版本信息 并且是字符串格式 print(cv2.getVersionString()) """ 作用:它可以读取不同格式的图像文…...

C/C++内存管理 | new的机制 | 重载自己的operator new

一、C/C内存分布 1. 内存分区 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信 .堆用于程序运行时动态内…...

知识库管理系统:企业数字化转型的加速器

在数字化转型的大潮中,知识库管理系统(KBMS)已成为企业提升效率和创新能力的关键工具。本文将探讨知识库管理系统的定义、企业建立知识库的必要性,以及如何快速搭建企业知识库。 知识库管理系统是什么? 知识库管理系统…...

uniapp 如何使用vuex store (亲测)

首先是安装: npm install vuexnext --save 安装之后,Vue2 这样写 不管在哪里,建立一个JS文件,假设命名:store.js 代码这样写: import Vue from vue; import Vuex from vuex;Vue.use(Vuex);const store…...

[编译报错]ImportError: No module named _sqlite3解决办法

1. 问题描述&#xff1a; 在使用python进行代码编译时&#xff0c;提示下面报错&#xff1a; "/home/bspuser/BaseTools/Source/Python/Workspace/WorkspaceDatabase.py", line 18, in <module>import sqlite3File "/usr/local/lib/python2.7/sqlite3/_…...

【旷视科技-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…...

python学习记录16

字符串总结 python程序使用unicode编码&#xff0c;中文字符与英文字符都占一个字符&#xff0c;但英文字符只占一个字节&#xff0c;中文字符若按照utf-8格式编码占3个字节。 &#xff08;1&#xff09;字符串常用方法 1&#xff09;大小写转化 string.upper()#将所有字母…...

AI 大模型在软件开发中的角色

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/402a907e12694df5a34f8f266385f3d2.png#pic_center> &#x1f393;作者简介&#xff1a;全栈领域优质创作者 &#x1f310;个人主页&#xff1a;百锦再新空间代码工作室 &#x1f4de;工作室&#xff1a;新空间代…...

React中类组件和函数组件的理解和区别

react代码模块分为类组件和函数组件。 从语法和定义、内部状态管理、生命周期、性能、可读性和维护性、上下文、集成状态管理库等角度对比React中类组件和函数组件。 1、语法和定义 类组件&#xff1a; 使用 ES6 的类&#xff08;class&#xff09;语法定义的 React 组件。…...

Day62||prim算法精讲 |kruskal算法精讲

prim算法精讲 53. 寻宝&#xff08;第七期模拟笔试&#xff09; 题目描述 在世界的某个区域&#xff0c;有一些分散的神秘岛屿&#xff0c;每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路&#xff0c;方便运输。 不同岛屿之间&#xff0c;路途距离不同&…...

upload-labs通关练习

目录 环境搭建 第一关 第二关 第三关 第四关 第五关 第六关 第七关 第八关 第九关 第十关 第十一关 第十二关 第十三关 第十四关 第十五关 第十六关 第十七关 第十八关 第十九关 第二十关 总结 环境搭建 upload-labs是一个使用php语言编写的&#xff0c…...

wordpress搭建主题可配置json

网站首页展示 在线访问链接 http://dahua.bloggo.chat/ 配置json文件 我使用的是argon主题&#xff0c;你需要先安装好主题&#xff0c;然后可以导入我的json文件一键配置。 需要json界面配置文件的&#xff0c;可以在评论区回复&#xff0c;看见评论我会私发给你。~...