当前位置: 首页 > news >正文

YoloV8改进策略:注意力改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

摘要

论文介绍

本文介绍的论文是“EPSANet:卷积神经网络上的高效金字塔挤压注意力块”,该论文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。论文通过替换ResNet瓶颈块中的 3 × 3 3 \times 3 3×

相关文章:

YoloV8改进策略:注意力改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

摘要 论文介绍 本文介绍的论文是“EPSANet:卷积神经网络上的高效金字塔挤压注意力块”,该论文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。论文通过替换ResNet瓶颈块中的 3 3 3 \times 3 3...

Nextflow最佳实践:如何在云上高效处理大规模数据集

1. Nextflow 软件架构介绍 Nextflow 是一个用于简化数据驱动计算流程的工具,可以在各种计算环境中轻松部署。它采用了分布式计算和容器技术,实现了高度模块化、可重复性和可扩展性。NextFlow 的软件架构主要包括以下几个部分: 用户界面&…...

数据结构:顺序表(动态顺序表)

专栏说明:本专栏用于数据结构复习,文章中出现的代码由C语言实现,在专栏中会涉及到部分OJ题目,如对你学习有所帮助,可以点赞鼓励一下博主喔💓 博客主页:Duck Bro 博客主页系列专栏:数…...

springboot040社区医院信息平台

🍅点赞收藏关注 → 添加文档最下方联系方式领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅 项目视频 spr…...

windows下QT5.12.11使用MSVC编译器编译mysql驱动并使用详解

1、下载mysql开发库,后面驱动编译的时候需要引用到,下载地址:mysql开发库下载 2、使用everything搜索:msvc-version.conf,用记事本打开,添加:QMAKE_MSC_VER=1909。不然msvc下的mysql源码加载不上。...

c++写一个死锁并且自己解锁

刷算法题: 第一遍:1.看5分钟,没思路看题解 2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。 3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法) 4.整理到自己的自媒体平台。 5.再刷重复的类…...

JavaScript方法修改 input type=file 样式

html中的<input type "file">的样式很难修改&#xff0c;又跟页面风格很不匹配。我就尝试了几种方法&#xff0c;但是不管是用label还是用opacity:0都很麻烦&#xff0c;还老是出问题&#xff0c;所以最后还是用JavaScript来解决。 下面附上代码&#xff1a;…...

群控系统服务端开发模式-应用开发-前端个人信息功能

个人信息功能我把他分为了3部分&#xff1a;第一部分是展示登录者信息&#xff1b;第二步就是登录者登录退出信息&#xff1b;第三部分就是修改个人资料。 一、展示登录者信息 1、优先添加固定路由 在根目录下src文件夹下route文件夹下index.js文件中&#xff0c;添加如下代码 …...

【jupyter】文件路径的更改

使用过 jupyter notebook 环境的同行&#xff0c; 都体会过随机生成 .html 静态网页的过程&#xff0c; 虽然文档较小&#xff0c; 但是不堪反复使用积少成多。本文基于windows系统。 找到 runtime 目录 一般 jupyter 默认 runtime 在下述格式目录中 C:\Users\用户名\AppData…...

Ruby编程语言全景解析:从基础到进阶

Ruby是一种动态的、面向对象的编程语言&#xff0c;以其优雅的语法和强大的功能而闻名于世。自从1995年由日本程序员松本行弘&#xff08;Yukihiro Matsumoto&#xff09;发布以来&#xff0c;Ruby便迅速成为了开发者中颇受欢迎的编程语言之一。无论是构建简单的脚本还是复杂的…...

Elasticsearch 8.16:适用于生产的混合对话搜索和创新的向量数据量化,其性能优于乘积量化 (PQ)

作者&#xff1a;来自 Elastic Ranjana Devaji, Dana Juratoni Elasticsearch 8.16 引入了 BBQ&#xff08;Better Binary Quantization - 更好的二进制量化&#xff09;—— 一种压缩向量化数据的创新方法&#xff0c;其性能优于传统方法&#xff0c;例如乘积量化 (Product Qu…...

解决vscode不能像pycharm一样从其他同级文件夹导包

在vscode中选择&#xff1a;文件-首选项-设置-扩展-Python-settings.json 向setting.json添加如下代码: "terminal.integrated.env.osx": {"PYTHONPATH": "${workspaceFolder}/",},"terminal.integrated.env.linux": {"PYTHON…...

DAY24|回溯算法Part03|LeetCode:93.复原IP地址、78.子集、90.子集II

目录 LeetCode:93.复原IP地址 基本思路 C代码 LeetCode:78.子集 基本思路 C代码 LeetCode:90.子集II 基本思路 C代码 通过used实现去重 通过set实现去重 不使用used和set版本 LeetCode:93.复原IP地址 力扣代码链接 文字讲解&#xff1a;LeetCode:93.复原IP地…...

接口自动化测试做到什么程度的覆盖算是合格的

接口自动化测试的覆盖程度是一个衡量测试质量与效率的重要指标&#xff0c;其“好”的标准并非绝对&#xff0c;而是根据项目特性和团队需求动态调整的结果。然而&#xff0c;有几个原则和实践可以帮助我们确定一个相对合理的覆盖范围&#xff0c;以及为何这些覆盖是必要的。 1…...

Kubernetes-ArgoCD篇-01-简介

1、什么是Argo CD Argo CD 是针对 Kubernetes 的声明式 GitOps 持续交付工具。 Argo CD官方文档地址&#xff1a;https://argo-cd.readthedocs.io Argo CD源码地址&#xff1a;https://github.com/argoproj/argo-cd 1.1 关于Argo Argo是一个开源的项目&#xff0c;主要是扩…...

阿里云通义大模型团队开源Qwen2.5-Coder:AI编程新纪元

&#x1f680; 11月12日&#xff0c;阿里云通义大模型团队宣布开源通义千问代码模型全系列&#xff0c;共6款Qwen2.5-Coder模型。这些模型在同等尺寸下均取得了业界最佳效果&#xff0c;其中32B尺寸的旗舰代码模型在十余项基准评测中均取得开源最佳成绩&#xff0c;成为全球最强…...

【大数据学习 | HBASE高级】hbase的参数优化

Zookeeper 会话超时时间 属性&#xff1a;zookeeper.session.timeout 解释&#xff1a;默认值为 90000 毫秒&#xff08;90s&#xff09; hbase.client.pause&#xff08;默认值 100ms&#xff09;重试间隔 hbase.client.retries.number&#xff08;默认 15 次&#xff09;重试…...

两个链表求并集、交集、差集

两个链表求并集、交集、差集 两个链表求并集、交集、差集其实都是创建一个新链表然后遍历插入的题型&#xff0c;所以下边就举并集一个例子。 首先将l1里的所有节点遍历存储到新节点l中开始遍历l2,如果l中不存在l2中的节点就将其尾插到l中 下面是两个链表求并集、交集、差集的代…...

C++中的栈(Stack)和堆(Heap)

在C中&#xff0c;堆&#xff08;heap&#xff09;和栈&#xff08;stack&#xff09;是两种用于存储数据的内存区域。理解它们的原理和区别&#xff0c;对于优化代码性能和确保代码的安全性至关重要。以下是对C中堆栈的详细解析&#xff0c;包括它们的分配方式、优缺点、应用场…...

Linux系统编程学习 NO.11——进程的概念(2)

谈谈进程的性质 进程的竞争性 由于CPU资源是稀缺的,进程数量是众多的。不可避免需要造成进程排队等待CPU资源的动作&#xff0c;内核的设计者为了让操作系统合理的去调度这这些进程&#xff0c;就产生了进程优先级的概念。设置合理的进程优先级能让不同进程公平的去竞争CPU资…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...