当前位置: 首页 > news >正文

Kafka节点服役和退役

1 服役新节点

1)新节点准备

(1)关闭 bigdata03,进行一个快照,并右键执行克隆操作。

(2)开启 bigdata04,并修改 IP 地址。

vi /etc/sysconfig/network-scripts/ifcfg-ens33修改完记得重启网卡:
systemctl restart network

(3)在 bigdata04 上,修改主机名称为 bigdata04。

hostname bigdata04    # 临时修改

[root@bigdata04 ~]# vim /etc/hostname

bigdata04

还要记得修改 /etc/hosts文件,并进行同步

修改bigdata01的hosts 文件,修改完之后,记得同步一下192.168.52.11 bigdata01
192.168.52.12 bigdata03
192.168.52.13 bigdata02
192.168.52.14 bigdata04xsync.sh /etc/hosts
scp -r /etc/hosts root@bigdata04:/etc/

(4)重新启动 bigdata03、bigdata04。

(5)修改 bigdata04 中 kafka 的 broker.id 为 3。

进入bigdata04的kafka中,修改里面的配置文件   config/server.properties

(6)删除 bigdata04 中 kafka 下的 datas 和 logs。

rm -rf datas/* logs/*

(7)启动 bigdata01、bigdata02、bigdata03 上的 kafka 集群。

先启动zk集群

xcall.sh zkServer.sh stop
xcall.sh zkServer.sh start

启动kafka集群(只能启动三台)

kf.sh start 

(8)单独启动 bigdata04 中的 kafka。

kafka-server-start.sh -daemon ./config/server.properties

查看kafka集群first主题的详情:

kafka-topics.sh --bootstrap-server bigdata01:9092 --topic first --describe

发现副本数并没有增加。

由于我之前创建first这个主题的时候只有一个副本,不是三个副本,所以呢,演示效果不佳。

kafka-topics.sh --bootstrap-server bigdata01:9092 --topic third --create --partitions 3 --replication-factor 3

2)执行负载均衡操作

(1)创建一个要均衡的主题

在Kafka下:

创建一个文件:vi topics-to-move.json
写上如下代码,如果多个topic 可以使用,分隔

{"topics": [{"topic": "third"}],"version": 1
}

2)生成一个负载均衡的计划

在创建的时候,记得启动bigdata04节点,否则计划中还是没有bigdata04

kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2,3" --generate

未来的分区策略拷贝一份:

{"version":1,"partitions":[{"topic":"abc","partition":0,"replicas":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"abc","partition":1,"replicas":[3,1,2],"log_dirs":["any","any","any"]},{"topic":"abc","partition":2,"replicas":[0,2,3],"log_dirs":["any","any","any"]}]}

 (3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2、broker3 中)。

vi increase-replication-factor.json
{"version":1,"partitions":[{"topic":"first","partition":0,"replicas":[3,2,0],"log_dirs":["any","any","any"]},{"topic":"first","partition":1,"replicas":[0,3,1],"log_dirs":["any","any","any"]},{"topic":"first","partition":2,"replicas":[1,0,2],"log_dirs":["any","any","any"]}]}
以上这个内容来自于第二步的执行计划。

(4)执行副本存储计划。

kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --reassignment-json-file increase-replication-factor.json --execute

(5)验证副本存储计划。

kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --reassignment-json-file increase-replication-factor.json --verify

如果不相信添加成功,可以查看first节点的详情:

2 退役旧节点

1)执行负载均衡操作

先按照退役一台节点,生成执行计划,然后按照服役时操作流程执行负载均衡。

(1)创建一个要均衡的主题

kafka下添加文件:vim topics-to-move.json
添加如下内容:
{"topics": [{"topic": "abc"}],"version": 1
}

(2)创建执行计划。

bin/kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2" --generate

(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2 中)。

添加文件: vi increase-replication-factor.json 
添加如下代码:
{"version":1,"partitions":[{"topic":"first","partition":0,"replicas":[0,2,1],"log_dirs":["any","any","any"]},{"topic":"first","partition":1,"replicas":[1,0,2],"log_dirs":["any","any","any"]},{"topic":"first","partition":2,"replicas":[2,1,0],"log_dirs":["any","any","any"]}]}

 (4)执行副本存储计划

kafka-reassign-partitions.sh --bootstrap-server hadoop11:9092 --reassignment-json-file increase-replication-factor.json --execute
2)执行停止命令

在 bigdata04上执行停止命令即可。

kafka-server-stop.sh

相关文章:

Kafka节点服役和退役

1 服役新节点 1)新节点准备 (1)关闭 bigdata03,进行一个快照,并右键执行克隆操作。 (2)开启 bigdata04,并修改 IP 地址。 vi /etc/sysconfig/network-scripts/ifcfg-ens33修改完…...

Git如何简单使用

文章目录 GitGitlabGitLab和GitHub有什么区别?Gitlab简单使用Gitlab常用指令Git Git是一个分布式版本控制系统。 它用于记录文件的修改历史,方便多人协作开发软件等项目。例如一个软件开发团队,成员们会频繁修改代码,Git可以追踪每个人的修改内容、时间等信息。 主要功能…...

酒水分销积分商城小程序开发方案php+uniapp

酒水分销积分商城小程序开发,开发语言后端php,前端uniapp。核心功能模块:酒水商城、积分商城、二级分销、抽奖、优惠券。可以二开或定制。协助部署搭建。...

MTU-内核态(数据链路层或网络接口上能够传输的最大数据包大小)

MTU(最大传输单元,Maximum Transmission Unit)是网络中用于表示数据链路层或网络接口上能够传输的最大数据包大小。 1. 工作原理 MTU 决定了一个数据包(包括头部和数据部分)的最大长度。它影响到数据的传输&#xff…...

React的基础API介绍(一)

目录 useEffect1. 替代生命周期方法2. 副作用管理3. 依赖项数组4. 多次使用5. 与闭包配合6. 支持异步操作7. 减少样板代码 注意事项useEffetct是如何拿到变量count最新的值?1. 每次渲染都会创建新的函数作用域2. 闭包捕获最新的状态值3. useEffect 的执行时机 useLa…...

【Electron】总结:如何创建Electron+Element Plus的项目

我将结合官网手册与AI问到的信息,直接给出步骤,与命令。 一、准备环境 首先在C盘Users,你的登录的账号名文件夹下,编辑.npmrc文件。添加镜像地址。 如果使用了yarn,则是.yarnrc。可以全部都配置。 npm install -g …...

从依托指标字典到 NoETL 自动化指标平台,指标口径一致性管理的进阶

今天,我们一起来梳理和盘点下不同代际指标平台如何实现指标口径一致性管理: 第一代:指标口径登记与管理 第一代指标平台聚焦于指标口径的登记与管理,依托指标字典实现企业指标口径的有效检索与管理功能。 此阶段,业…...

嵌入式面试题练习 - 2024/11/15

欢迎找我进行职业规划,超值的自我投资 -> 嵌入式软件工程师一对一指导 1.设有定义char *p[]{"Shanghai","Beijing","Honkong"};则结果为j字符的表达式是() A *p[1] 3 B *(p[1] 3) C *(p[3] 1) D p[3] […...

分析http话术异常挂断原因

用户反馈在与机器人通话时,自己明明有说话,但是通话还是被挂断了,想知道原因。 分析日志 我们根据用户提供的freeswitch日志分析:发现是因为超时导致话术执行hangup动作,结束了通话。 从这一行向上分析日志&#xff…...

云岚到家 秒杀抢购

目录 秒杀抢购业务特点 常用技术方案 抢券 抢券界面 进行抢券 我的优惠券列表 活动查询 系统设计 活动查询分析 活动查询界面显示了哪些数据? 面向高并发如何提高活动查询性能? 如何保证缓存一致性? 数据流 Redis数据结构设计 如…...

【WPF】Prism库学习(一)

Prism介绍 1. Prism框架概述: Prism是一个用于构建松耦合、可维护和可测试的XAML应用程序的框架。它支持WPF、.NET MAUI、Uno Platform和Xamarin Forms等多个平台。对于每个平台,Prism都有单独的发布版本,并且它们在不同的时间线上独立开发。…...

0 -vscode搭建python环境教程参考(windows)

引用一篇非常详细的vscode搭建python环境教程 链接:vscode安装以及配置Python基本环境 以下是VSCode和PyCharm的对比 个人更建议使用VSCode Visual Studio Code (VSCode) Visual Studio Code 是由微软开发的一款免费、开源的轻量级代码编辑器。它支持多种编程语…...

Uniapp 引入 Android aar 包 和 Android 离线打包

需求: 原生安卓 apk 要求嵌入到 uniapp 中,并通过 uniapp 前端调起 app 的相关组件。 下面手把手教你,从 apk 到 aar,以及打包冲突到如何运行,期间我所遇到的问题都会 一 一 进行说明,相关版本以我文章内为…...

10款高效音频剪辑工具,让声音编辑更上一层楼。

音频剪辑在音频,视频,广告制作,游戏开发,广播等领域中都有广泛的应用。通过音频剪辑,创作者可以通将不同的音频片段进行剪切、拼接、混音等操作,创作出风格各异的音乐作品。如果你也正在为音频创作而努力的…...

Javascript——设计模式(一)

Javascript常见设计模式-CSDN博客 设计模式专栏内容总结-CSDN博客 C#编程思想——设计模式-CSDN博客 设计模式概述及其作用 设计模式(Design Pattern)是一套被反复使用、多数人知晓的、经过分类编目的代码设计经验的总结。使用设计模式的主要目的是为…...

Hybird和WebView

在移动端Hybrid开发模式下,iOS和Android应用都可以通过一种共享代码的方式,利用Web技术(HTML、CSS、JavaScript)和原生应用的功能进行开发。这种方式的主要优点是减少了开发成本,因为大部分代码可以共享,同…...

c++实现中缀表达式 转换为后缀表达式

使用栈来计算后缀表达式的值: 9(3 - 1)*310/2; 后缀表达式:所有的符号都是在运算数字的后面出现: 9 3 1 – 3 * 10 2 / 规则: 中缀表达式转后缀表达式: 1.从左到右遍历中缀表达式的每个数字和符号,若是数字就打印同时入栈数…...

Cisco FMC重置SmartLicense到Evaluatin mode步骤

1 科普: what is FMC full name is Firepower Management Center, 是思科FirePower防火墙的统一管理平台. 能管理ASA不? no,只能管理FTD模式的墙。这里的FTD包括物理机firepower系列运行的FTD,以及FTDv(虚拟化版本&a…...

多表查询综合归纳

目录 1. 多表关系 1.1 一对多(多对一) 1.2 多对多 1.3 一对一 2. 多表查询概述 2.1 熟悉表 2.2 笛卡尔积 2.3 消除笛卡尔积 2.4 多表查询分类 3. 内连接 3.1 隐式内连接 3.2 显式内连接 4. 外连接 4.1 左外连接 4.2 右外连接 5. 自连接 …...

【5.线性表-链式表示-王道课后算法题】

王道数据结构-第二章-链式表示算法题 1.在带头结点的单链表L中,删除所有值为x的结点,并释放其空间,假设值为x的结点不唯一,试编写算法以实现上述操作。2. 试编写在带头结点的单链表L中删除一个最小值结点的高效算法(假设该结点唯一…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​:下载安装 ​​De…...

小木的算法日记-多叉树的递归/层序遍历

🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...

二维FDTD算法仿真

二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

[拓扑优化] 1.概述

常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

FOPLP vs CoWoS

以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...

Java中栈的多种实现类详解

Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...