在Ubuntu 24.04 LTS上安装飞桨PaddleX
前面我们介绍了《在Windows用远程桌面访问Ubuntu 24.04.1 LTS》本文接着介绍安装飞桨PaddleX。
PaddleX 3.0 是基于飞桨框架构建的一站式全流程开发工具,它集成了众多开箱即用的预训练模型,可以实现模型从训练到推理的全流程开发,支持国内外多款主流硬件,助力AI 开发者进行产业实践。
本文将介绍在Ubuntu 24.04.1LTS上从零开始安装飞桨PaddleX,整个流程分四步:
1. 安装英伟达显卡驱动程序;
2. 安装Anaconda并配置虚拟环境;
3. 安装PaddlePaddle;
4. 安装PaddleX;
一,安装英伟达显卡驱动程序
把英伟达独立显卡安装到桌面计算机中,并安装好了Ubuntu24.04.1 LTS后,下一步就是安装英伟达显卡驱动程序。
首先,请运行“ubuntu-drivers devices”命令列出当前可用的硬件设备,确保Ubuntu 24.04.1 LTS已发现安装在桌面计算机中的英伟达显卡,如下图所示。
然后,运行Ubuntu驱动自动安装命令“ubuntu-drivers autoinstall”,完成英伟达显卡驱动程序的安装,并重启系统。
# 运行Ubuntu驱动自动安装命令
sudo ubuntu-drivers autoinstall
# 重启系统
sudo reboot,
系统重启完毕后,运行“nvidia-smi”命令,验证安装。
nvidia-smi
二,安装Anaconda并配置虚拟环境
Anaconda是Python软件包(packages)和虚拟环境(virtual environment)的管理工具,让Python开发者能方便快捷地管理Python运行的虚拟环境和开发应用程序所依赖的各种软件包。请用命令从Anaconda管网或清华大学开源软件镜像站下载并安装Anaconda:
# 用wget下载Anaconda3-2024.06-1-Linux-x86_64.sh,或者,将链接拷贝到浏览器中下载
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
# 运行Anaconda3-2024.06-1-Linux-x86_64.sh
bash Anaconda3-2024.06-1-Linux-x86_64.sh
滑动查看更多
在阅读并接受license agreement后,所有步骤按默认配置键入“Enter”或“yes”即可完成安装,如下图所示:
看到"Thank you for installing Anaconda3!"字样后,键入命令“source ~/.bashrc”,激活conda。
source ~/.bashrc
接着,请输入命令创建名为“pdx_cu118”的虚拟环境(注:当前支持Python 3.8 ~ Python 3.10下运行,更多Python版本适配中):
conda update conda
conda create -n pdx_cu118 python=3.11
conda activate pdx_cu118
注意,对于无法连接到 Anaconda 官方源的国内用户,可以按照以下命令先添加清华源,再创建虚拟环境。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
滑动查看更多
三,安装PaddlePaddle
飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。
在虚拟环境paddlex中,使用下面的命令一键安装飞桨GPU版本:
python -m pip install paddlepaddle-gpu==3.0.0b2 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
滑动查看更多
注意:paddlepaddle最新版本的安装指令,请查阅:
https://www.paddlepaddle.org.cn/
安装完毕后,运行下面的命令,验证安装。若收到“PaddlePaddle is installed successfully!”反馈信息,则表明PaddlePaddle安装成功!
python
import paddle
paddle.utils.run_check()
四,安装Paddle X
成功安装PaddlePaddle后,使用下面的命令一键安装PaddleX。
pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b2-py3-none-any.whl
滑动查看更多
注意:paddlex最新版本的安装指令,请查阅:
https://github.com/PaddlePaddle/PaddleX
安装完毕后,运行下面的命令,验证安装。
paddlex --pipeline image_classification --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg --device gpu:0
滑动查看更多
若出现下面的结果,说明PaddlePaddle和PaddleX在Ubuntu24.04LTS上安装成功!该安装步骤也支持Ubuntu20.04和22.04。
五,总结
本文介绍了在Ubuntu 24.04.1LTS上从零开始安装飞桨PaddleX的完成流程。大家快来使用PaddleX高效训练自己的模型吧!
更多精彩内容请关注“算力魔方®”!
相关文章:

在Ubuntu 24.04 LTS上安装飞桨PaddleX
前面我们介绍了《在Windows用远程桌面访问Ubuntu 24.04.1 LTS》本文接着介绍安装飞桨PaddleX。 PaddleX 3.0 是基于飞桨框架构建的一站式全流程开发工具,它集成了众多开箱即用的预训练模型,可以实现模型从训练到推理的全流程开发,支持国内外多…...
Homebrew 命令大全
Homebrew 是 macOS 和 Linux 系统上的一个流行的包管理器,它可以帮助用户轻松地安装、更新和管理软件包。以下是一些常用的 Homebrew 命令: 安装 Homebrew 如果你还没有安装 Homebrew,可以使用以下命令在 macOS 上进行安装: /b…...

Docker+Django项目部署-从Linux+Windows实战
一、概述 1. 什么是Docker Docker 是一个开源的应用容器引擎,支持在win、mac、Linux系统上进行安装。可以帮助我们在一台电脑上创建出多个隔离的环境,比传统的虚拟机极大的节省资源 。 为什么要创建隔离的环境? 假设你先在有一个centos7.…...

前端 JS 实用操作总结
目录 1、重构解构 1、数组解构 2、对象解构 3、...展开 2、箭头函数 1、简写 2、this指向 3、没有arguments 4、普通函数this的指向 3、数组实用方法 1、map和filter 2、find 3、reduce 1、重构解构 1、数组解构 const arr ["唐僧", "孙悟空&quo…...
11.15 机器学习-集成学习方法-随机森林
# 机器学习中有一种大类叫**集成学习**(Ensemble Learning),集成学习的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。集成算法可以说从一方面验证了中国的一句老话: # 三个臭皮匠,…...

【SQL】E-R模型(实体-联系模型)
目录 一、介绍 1、实体集 定义和性质 属性 E-R图表示 2. 联系集 定义和性质 属性 E-R图表示 一、介绍 实体-联系数据模型(E-R数据模型)被开发来方便数据库的设计,它是通过允许定义代表数据库全局逻辑结构的企业模式…...
C/C++静态库引用过程中出现符号未定义的处理方式
问题背景: 在接入新库(静态库)时遇到了符号未定义问题,并发现改变静态库的链接顺序可以解决问题。 问题根源: 静态库是由 .o 文件拼接而成的,链接静态库时,链接器以 .o 文件为单位进行处理。链接…...

『VUE』27. 透传属性与inheritAttrs(详细图文注释)
目录 什么是透传属性(Forwarding Attributes)使用条件唯一根节点禁用透传属性继承总结 欢迎关注 『VUE』 专栏,持续更新中 欢迎关注 『VUE』 专栏,持续更新中 什么是透传属性(Forwarding Attributes) 在 V…...

借助Excel实现Word表格快速排序
实例需求:Word中的表格如下图所示,为了强化记忆,希望能够将表格内容随机排序,表格第一列仍然按照顺序编号,即编号不跟随表格行内容调整。 乱序之后的效果如下图所示(每次运行代码的结果都不一定相同&#x…...

数据结构 ——— 层序遍历链式二叉树
目录 链式二叉树示意图编辑 何为层序遍历 手搓一个链式二叉树 实现层序遍历链式二叉树 链式二叉树示意图 何为层序遍历 和前中后序遍历不同,前中后序遍历链式二叉树需要利用递归才能遍历 而层序遍历是非递归的形式,如上图:层序遍历的…...

使用 Prompt API 与您的对象聊天
tl;dr:GET、PUT、PROMPT。现在,可以使用新的 PromptObject API 仅使用自然语言对存储在 MinIO 上的对象进行总结、交谈和提问。在本文中,我们将探讨这个新 API 的一些用例以及代码示例。 赋予动机: 对象存储和 S3 API 的无处不在…...
SpringBoot整合Mybatis-Plus实践汇总
相关依赖 MyBatis-Plus涉及的依赖主要是Mybatis-start、和分页插件的依赖,不考虑使用额外分页插件的前提下,只需要mybatis-plus-boot-starter一个依赖即可与SpringBoot集成: <!--Mybatis-plugs--><dependency><groupId>co…...

基于Spring Boot的在线性格测试系统设计与实现(源码+定制+开发)智能性格测试与用户个性分析平台、在线心理测评系统的开发、性格测试与个性数据管理系统
博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...
Python实现人脸识别算法并封装为类库
引言 人脸识别技术在现代社会中应用广泛,从安全监控到智能门锁,再到社交媒体中的照片标记功能,都离不开这项技术。本文将详细介绍如何使用Python实现基本的人脸识别算法,并将其封装为一个类库,以便在多个项目中复用。…...
uniapp小程序分享使用canvas自定义绘制 vue3
使用混入结合canvas做小程序的分享 在混入里面定义一个全局共享的分享样式,在遇到特殊页面需要单独处理 utils/share.js import { ref } from vue; export default {onShow() {// 创建时设置统一页面的默认值uni.$mpShare {title: 分享的标题,path: /pages/home/…...

SpringCloud核心组件(四)
文章目录 NacosNacos 配置中心1.起源2.基本概念ProfileData IDGroup 3.基础配置a. bootstrap.ymlb. application.ymlc. nacos 中的配置 DataIDd.测试读取配置中心配置内容 4.配置隔离a.命名空间b.DataIDc.bootstrap.ymld.service 隔离 5.配置拆分a.配置拆分策略b.DataID 配置c.…...
如何把本地docker 镜像下载用到centos系统中呢?
如果需要将镜像下载到本地或在 CentOS 系统上使用该镜像,你可以按照以下步骤操作: 1. 拉取镜像 如果想将镜像从 Docker Hub 或其他镜像仓库下载到本地,可以使用 docker pull 命令。 如果使用的是本地构建的镜像(如 isc:v1.0.0&…...

Godot的开发框架应当是什么样子的?
目录 前言 全局协程还是实例协程? 存档! 全局管理类? UI框架? Godot中的异步(多线程)加载 Godot中的ScriptableObject 游戏流程思考 结语 前言 这是一篇杂谈,主要内容是对我…...
GitHub新手入门 - 从创建仓库到协作管理
GitHub新手入门 - 从创建仓库到协作管理 GitHub 是开发者的社交平台,同时也是代码托管的强大工具。无论是个人项目、开源协作,还是团队开发,GitHub 都能让你轻松管理代码、版本控制和团队协作。今天,我们将从基础开始,…...

作业25 深度搜索3
作业: #include <iostream> using namespace std; bool b[100][100]{0}; char map[100][100]{0}; int dx[4]{0,1,0,-1}; int dy[4]{1,0,-1,0}; int n,m; int sx,sy,ex,ey; int mink2147483647; void dfs(int,int,int); int main(){cin>>n>>m;for(…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...