高斯混合模型回归(Gaussian Mixture Model Regression,GMM回归)
高斯混合模型(GMM)是一种概率模型,它假设数据是由多个高斯分布的混合组成的。在高斯混合回归中,聚类与回归被结合成一个联合模型:
- 聚类部分 — 使用高斯混合模型进行聚类,识别数据的不同簇。
- 回归部分 — 对每个簇中的数据使用回归方法来建模,通常是线性回归或非线性回归。
GMM回归不仅能捕捉数据的聚类结构,还能进行回归预测,适用于处理具有复杂分布的数据。
下面是一个简单的高斯混合模型回归(GMM回归)的Python示例。在这个示例中,我们将使用GaussianMixture模型进行数据的聚类,然后在每个聚类中使用线性回归进行回归预测。
代码步骤:
- 生成数据:首先,生成一些具有非线性关系的样本数据。
- 高斯混合模型聚类:使用
GaussianMixture对数据进行聚类。 - 在每个聚类中进行回归:在每个聚类中的数据上训练一个回归模型(例如线性回归)。
- 预测:对新样本进行聚类预测并使用相应的回归模型进行回归。
示例代码:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split# 1. 生成一些数据
n_samples = 300
X, y = make_regression(n_samples=n_samples, n_features=1, noise=10, random_state=42)# 添加一些非线性扰动
y = y + 50 * np.sin(X).ravel()# 2. 高斯混合模型聚类
n_components = 3 # 假设数据可以分成3个簇
gmm = GaussianMixture(n_components=n_components, random_state=42)
gmm.fit(X) # 对数据进行聚类# 预测每个数据点属于哪个簇
cluster_labels = gmm.predict(X)# 3. 在每个簇中训练回归模型
regressors = {}
for i in range(n_components):# 选取当前簇的数据X_cluster = X[cluster_labels == i]y_cluster = y[cluster_labels == i]# 对每个簇的样本拟合线性回归模型regressor = LinearRegression()regressor.fit(X_cluster, y_cluster)regressors[i] = regressor# 4. 可视化数据和回归模型
plt.figure(figsize=(10, 6))
plt.scatter(X, y, c=cluster_labels, cmap='viridis', marker='o', edgecolor='k', s=50)
plt.title("GMM Clustering and Regression", fontsize=16)
plt.xlabel("X", fontsize=12)
plt.ylabel("y", fontsize=12)# 绘制每个聚类的回归线
X_range = np.linspace(X.min(), X.max(), 1000).reshape(-1, 1)
for i in range(n_components):y_pred = regressors[i].predict(X_range)plt.plot(X_range, y_pred, label=f'Cluster {i} Regression', linewidth=2)plt.legend()
plt.show()# 5. 使用训练好的回归模型进行预测
# 假设我们有新的样本
X_new = np.array([[0.1], [1.5], [3.0]])# 对新的样本进行聚类预测
new_cluster_labels = gmm.predict(X_new)# 对每个样本使用对应簇的回归模型进行预测
y_new_pred = np.array([regressors[label].predict(X_new[i].reshape(1, -1)) for i, label in enumerate(new_cluster_labels)])print("Predictions for new samples:", y_new_pred.ravel())
代码说明:
-
生成数据:我们使用
make_regression生成一些线性数据,然后添加了一个非线性扰动(50 * np.sin(X))来模拟更复杂的关系。 -
聚类:使用
GaussianMixture模型将数据分为3个簇。GaussianMixture模型会根据数据的分布情况进行高斯分布的拟合。 -
回归:对于每个簇,我们单独训练一个线性回归模型。每个簇的数据都会拟合一个单独的回归模型,从而使得每个簇内的回归结果更加贴合数据的局部模式。
-
预测:通过预测新样本所属的簇,然后使用对应簇中的回归模型进行预测。
-
可视化:展示了数据点、每个簇的回归线以及数据的聚类分布。
运行结果:

- 聚类可视化:图中不同颜色的点表示数据被分成不同的簇,每个簇的数据分布和回归线是不同的。
- 回归预测:对于新样本,我们首先确定它属于哪个簇,然后根据该簇的回归模型进行预测。
适用场景:
- 当数据集存在多个模式或子群体时,使用高斯混合模型进行聚类,并在每个簇内训练单独的回归模型,有助于提高回归性能。
- 该方法适合数据分布复杂且呈现非线性关系的场景。
这个示例只是一个简单的实现,您可以根据需要进行更复杂的回归模型设计(例如,非线性回归模型、决策树回归等)以及调整高斯混合模型的超参数。
相关文章:
高斯混合模型回归(Gaussian Mixture Model Regression,GMM回归)
高斯混合模型(GMM)是一种概率模型,它假设数据是由多个高斯分布的混合组成的。在高斯混合回归中,聚类与回归被结合成一个联合模型: 聚类部分 — 使用高斯混合模型进行聚类,识别数据的不同簇。回归部分 — 对…...
【3D Slicer】的小白入门使用指南八
3D Slicer DMRI(Diffusion MRI)-扩散磁共振认识和使用 0、简介 大脑解剖 ● 白质约占大脑的 45% ● 有髓神经纤维(大约10微米轴突直径) 白质探索 朱尔斯约瑟夫德杰林(Jules Joseph Dejerine,《神经中心解剖学》(巴黎,1890-1901):基于髓磷脂染色标本的神经解剖图谱)…...
【流量分析】常见webshell流量分析
免责声明:本文仅作分享! 对于常见的webshell工具,就要知攻善防;后门脚本的执行导致webshell的连接,对于默认的脚本要了解,才能更清晰,更方便应对。 (这里仅针对部分后门代码进行流量…...
基于树莓派的边缘端 AI 目标检测、目标跟踪、姿态估计 视频分析推理 加速方案:Hailo with ultralytics YOLOv8 YOLOv11
文件大纲 加速原理硬件安装软件安装基本设置系统升级docker 方案Demo 测试目标检测姿态估计视频分析参考文献前序树莓派文章hailo加速原理 Hailo 发布的 Raspberry Pi AI kit 加速原理,有几篇文章介绍的不错 https://ubuntu.com/blog/hackers-guide-to-the-raspberry-pi-ai-ki…...
Java在算法竞赛中的常用方法
在算法竞赛中,Java以其强大的标准库和高效的性能成为了众多参赛者的首选语言。本文将详细介绍Java在算法竞赛中的常用集合、字符串处理、进制转换、大数处理以及StringBuilder的使用技巧,帮助你在竞赛中更加得心应手。 常用集合 Java的集合框架提供了多…...
Vulnhub靶场案例渗透[10]- Momentum2
文章目录 一、靶场搭建1. 靶场描述2. 下载靶机环境3. 靶场搭建 二、渗透靶场1. 确定靶机IP2. 探测靶场开放端口及对应服务3. 扫描网络目录结构4. 代码审计5. 反弹shell6. 提权 一、靶场搭建 1. 靶场描述 - Difficulty : medium - Keywords : curl, bash, code reviewThis wor…...
Spark RDD中常用聚合算子源码层面的对比分析
在 Spark RDD 中,groupByKey、reduceByKey、foldByKey 和 aggregateByKey 是常用的聚合算子,适用于按键进行数据分组和聚合。它们的实现方式各不相同,涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析,以及每个算子…...
计算机网络 (6)物理层的基本概念
前言 计算机网络物理层是OSI模型(开放式系统互联模型)中的第一层,也是七层中的最底层,它涉及到计算机网络中数据的物理传输。 一、物理层的主要任务和功能 物理层的主要任务是处理物理传输介质上的原始比特流,确保数据…...
快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux)
### 快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux) --- Docker 是一款开源容器化平台,广泛应用于开发、测试和部署。本文将为您提供分步骤的 Docker 安装教程,涵盖 Windows、macOS 和 Linux 系统。 …...
kafka消费者出现频繁Rebalance
kafka消费者在正常使用过程中,突然出现了不消费消息的情况,项目里是使用了多个消费者消费不同数据,按理不会相互影响,看日志,发现消费者出现了频繁的Rebalance。 Rebalance的触发条件 组成员发生变更(新consumer加入组…...
rk3399开发环境使用Android 10初体验蓝牙功能
版本 日期 作者 变更表述 1.0 2024/11/10 于忠军 文档创建 零. 前言 由于Bluedroid的介绍文档有限,以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等),加上需要掌握的语言包括Java/C/C等࿰…...
ASP.NET 部署到IIS,访问其它服务器的共享文件 密码设定
asp.net 修改上面的 IIS需要在 配置文件 添加如下内容 》》》web.config <system.web><!--<identity impersonate"true"/>--><identity impersonate"true" userName"您的账号" password"您的密码" /><co…...
将自定义函数添加到MATLAB搜索路径的方法
在MATLAB中,将自定义函数添加到搜索路径可以确保你能够方便地调用这些函数,而不必每次都指定完整路径。本文介绍几种将自定义函数添加到MATLAB搜索路径的方法 文章目录 使用 MATLAB 的路径管理工具使用 addpath 命令在启动时自动添加路径使用 genpath 命…...
云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测
背景 如果你要为应用程序构建规范或用户故事,那么务必先把应用程序每个组件的监控指标考虑进来,千万不要等到项目结束或部署之前再做这件事情。——《Prometheus监控实战》 去年写了一篇在Docker环境下部署若依微服务ruoyi-cloud项目的文章,当…...
什么是MySQL,有什么特点
什么是 MySQL? MySQL 是一个关系型数据库管理系统(RDBMS),由瑞典公司 MySQL AB 开发,后来被 Sun Microsystems 收购,最终成为 Oracle Corporation 的一部分。MySQL 是最流行的关系型数据库之一,…...
初始化mysql5.7
-- 环境变量 MYSQL_HOME %MYSQL_HOME%\bin -- 新增配置文件 my.ini [mysqld] port 3306 basedir D:/develop/MySQL/mysql-5.7.44-winx64 datadir D:/develop/MySQL/mysql-5.7.44-winx64/data max_connections 200character-set-serverutf8 default-storage-engineINNODB …...
C# 字典应用
using System;using System.Collections.Generic;class Program{static void Main(){// 创建一个字典,键是字符串类型,值是整数类型Dictionary<string, int> studentScores new Dictionary<string, int>();// 向字典中添加键值对// 原理&am…...
CDH安装与配置及相关大数据组件实践
CDH安装与配置及相关大数据组件实践 一、CDH 介绍 CDH(Cloudera’s Distribution Including Apache Hadoop)是一个基于 Web 用户界面的大数据平台版本。它支持大多数 Hadoop 组件,包括 HDFS、MapReduce、Hive、Pig、HBase、Zookeeper、Sqoo…...
fastapi 调用ollama之下的sqlcoder模式进行对话操作数据库
from fastapi import FastAPI, HTTPException, Request from pydantic import BaseModel import ollama import mysql.connector from mysql.connector.cursor import MySQLCursor import jsonapp FastAPI()# 数据库连接配置 DB_CONFIG {"database": "web&quo…...
YOLO系列基础(六)YOLOv1原理详解,清晰明了!
系列文章地址 YOLO系列基础(一)卷积神经网络原理详解与基础层级结构说明-CSDN博客 YOLO系列基础(二)Bottleneck瓶颈层原理详解-CSDN博客 YOLO系列基础(三)从ResNet残差网络到C3层-CSDN博客 YOLO系列基础…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
