AI大模型(一):Prompt AI编程
一、Prompt Engineering,提示工程
提示工程也叫指令工程:
- Prompt是发给大模型的指令,比如【讲个睡前故事】、【用Python写个消消乐游戏】等;
- 本质上大模型相关的工程工作,都是围绕prompt展开的;
- 提示工程门槛低,天花板高,所以又有人戏称Prompt为咒语;
- Prompt相当于是AGI时代的编程语言;
- 高质量prompt核心:具体、丰富、少歧义;
- Prompt是个逐步调优的过程,并不是一下子就好。
OpenAI官方提供的Prompt Engineering教程:
https://platform.openai.com/docs/guides/prompt-engineering
Prompt的典型构成
不要固守模板,模板的价值是提醒我们别漏掉什么,而不是必须遵守模板。
1. 角色:
- 给AI定义一个最匹配任务的角色;
- 比如:【你是一个软件产品经理】【你是一位小学语文老师】;
- 先定义角色,就是在开头把问题域收窄,较少二义性;
2. 指令:
- 对任务进行描述;
3. 上下文:
- 给出与任务相关的其它背景信息;
4. 例子:
- 必要时给出举例,学术中称为one-shot learning, few-shot learning或in-context learning;
5. 输入:
- 任务的输入信息;再提示词中明确的标识出输入;
6. 输出:
- 输出的格式描述,以便后续模块自动解析模型的输出结果,比如JSON、XML;
案例:推荐流量包的智能客服
需求:智能客服根据用户的咨询,推荐最合适的流量包。
大模型应用于软件系统的核心思路:
- 把输入的自然语言对话,转成结构化的信息(自然语言理解NLU);
- 用传统软件的手段去处理结构化信息,得到处理策略;
- 把策略转成自然语言输出(NLG);
对话流程举例:
用Prompt实现
定义任务描述和输入:
"""
1. 任务描述
"""instruction = """你的任务是识别用户对手机流量套餐产品的选择条件。每种流量套餐产品包含三个属性:名称、月费价格和月流量。根据用户输入,识别用户在上述三种属性上的需求是什么""""""
2. 用户输入
"""input_text = """办理100G的套餐"""# prompt模板,instruction和input_text会被替换为上面的内容
prompt = f"""
{instruction}用户输入:{input_text}
""""""
3. 调用大模型
"""
response = get_completion(prompt)
print(response)
约定输出格式:
"""
1. 输出格式
"""output_format = """以 JSON 格式输出""""""
2. 稍微调整咒语,加入输出格式
"""
prompt = f"""
{instruction}{output_format}用户输入:
{input_text}
""""""
3. 调用大模型
"""
response = get_completion(prompt, response_format="json_object")
print(response)
二、用AI帮我写代码
认知AI最好的方式就是天天用。
问自己几个问题:
1. 我的时间都消耗在哪里?
- 工作、学习、娱乐、锻炼
- 工作&学习:学习新技术新知识,一方面了解发展水平和趋势,以及各个工具如何使用;另一方面结合以往和现在的工作场景、工作中的痛点,思考有哪些可以优化改进的地方。
- 娱乐:找各种好看的下饭剧
- 锻炼:根据个人喜好和身体反馈,不定期的调整运动项目和动作
2. 怎么让AI帮我省时间?
- 重复脑力劳动都可以考虑AI化;
- 【输入和输出都是文本】的场景,都值得尝试用大模型提效;
3. 如何找到落地场景?
- 从最熟悉的领域入手
- 尽量找能用语言描述清楚的任务
- 别求大而全。将任务拆解,先解决小任务、小场景
- 让AI学最厉害员工的能力,再让ta辅助其他员工,实现降本增效
AI Embedded模式 ———》Copilot模式——》Agent模式
Agent模式目前有点超前,Copilot是当前主流
实现Copilot的主流架构是多Agent架构,模仿人做事,将业务拆成工作流(workflow 、SOP、pipeline),每个Agent负责一个工作流节点。
【编程】是目前大模型能力最强的垂直领域,甚至超越了对【自然语言】本身的处理能力。因为训练数据质量高、结果可衡量、编程语言无二义性,且有论文证明编程训练能增强模型的推理能力,所以会特别训练这块。
知道怎么用好AI编程,了解它的能力边界、使用场景,就能类比出其他领域的AI怎么落地,能力上限在哪。
How to build an enterprise LLM application: Lessons from GitHub Copilot - The GitHub Blog
产品设计经验:在chat界面里用 @ 串联多个agent是一个常见的AI产品设计范式。
一些其他的使用方式:10 unexpected ways to use GitHub Copilot - The GitHub Blog
让AI在不影响用户原有工作习惯的情况下切入使用场景,接受度更高。例如,Copilot最开始使用的是问答,然后取消问答使用补全,最后恢复问答。
先以架构师的身份,让AI辅助你对架构进行选型;通过需求文档和业务文档,让AI给出架构的建议;然后以开发者的身份,让AI辅助你写业务代码(逐层拆分向下写)。
落地经验:新工具的引入,可能会有一些负面的因素要考虑,需要有足够的信心和耐心去应对。核心是调整好利益链。
总结
不管是个人还是企业,都能借用AI提效。
- 通过天天使用,总结使用大模型的规律,【输入和输出都是文本】的场景,都值得尝试用大模型提效。
- 通过体验GitHub Copilot,认识到,AI产品的打磨过程、落地和如何打造盈利产品。
- 基于落地的成功案例,理解基本原理,避免拍脑袋。
相关文章:

AI大模型(一):Prompt AI编程
一、Prompt Engineering,提示工程 提示工程也叫指令工程: Prompt是发给大模型的指令,比如【讲个睡前故事】、【用Python写个消消乐游戏】等;本质上大模型相关的工程工作,都是围绕prompt展开的;提示工程门…...

ArcGIS Pro属性表乱码与字段名3个汉字解决方案大总结
01 背景 我们之前在使用ArcGIS出现导出Excel中文乱码及shp添加字段3个字被截断的情况,我们有以下应对策略: 推荐阅读:ArcGIS导出Excel中文乱码及shp添加字段3个字被截断? 那如果我们使用ArGIS Pro出现上述问题,该如何…...

小程序-基于java+SpringBoot+Vue的驾校预约平台设计与实现
项目运行 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA; 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.硬件环境:…...
计算机网络网关简介
网关,在计算机网络中扮演着至关重要的角色,它如同不同语言间的翻译官,让不同网络协议、不同体系结构的网络能够相互通信。简而言之,网关就是一个网络连接到另一个网络的“关口”,负责数据的接收、转换与发送。 在局域…...
如何用python将pdf转换为json格式
使用 Python 将 PDF 文件转换为 JSON 格式,主要步骤如下: 读取 PDF 内容:首先使用一个库读取 PDF 文件内容,如 PyMuPDF 或 pdfplumber。这些库可以逐页提取文本,并返回结构化的数据。 组织数据到 JSON:将提…...

STL关联式容器介绍
在前文中介绍了STL的序列式容器; STL序列式容器之vector-CSDN博客 STL序列式容器之list-CSDN博客 STL序列式容器之deque-CSDN博客 STL序列式容器之stack-CSDN博客 STL序列式容器之queue-CSDN博客 STL序列式容器之heap(堆)-CSDN博客 ST…...
java计算机毕业设计选题参考3000篇
基于微信小程序的springboot高校餐厅食品留样管理系统 springboot vue大学生创新创业训练项目管理系统 Springboot的疫情网课管理系统 基于微信小程序的计算机实验室排课与查询系统ssm后端 基于ssm后端的学生购电电费管理微信小程序weixin356 ssm机场网上订票系统 基于ssmvue的…...

JWT介绍、测试案例 以及实际开发中的使用
什么是JWT? JWT,通过数字签名的方式,以json对象为载体,在不同的服务终端之间安全的传输信息,用来解决传统session的弊端。 JWT在前后端分离系统,通过JSON形式作为WEB应用中的令牌(token),用于…...

快排和归并
目录 前言 快速排序 相遇位置一定比key小的原理(大): 避免效率降低方法(快排优化) 三数取中(选key优化) 小区间优化 hoare版本快排 挖坑法快排 前后指针快排 非递归快排 归并排序 非递…...

VUE+SPRINGBOOT实现邮箱注册、重置密码、登录功能
随着互联网的发展,网站用户的管理、触达、消息通知成为一个网站设计是否合理的重要标志。目前主流互联网公司都支持手机验证码注册、登录。但是手机短信作为服务端网站是需要付出运营商通信成本的,而邮箱的注册、登录、重置密码,无疑成为了这…...

Vue 项目打包后环境变量丢失问题(清除缓存),区分.env和.env.*文件
Vue 项目打包后环境变量丢失问题(清除缓存),区分.env和.env.*文件 问题背景 今天在导报项目的时候遇到一个问题问题:在开发环境中一切正常,但在打包后的生产环境中,某些环境变量(如 VUE_APP_B…...

创建vue+electron项目流程
一个vue3和electron最基本的环境搭建步骤如下:// 安装 vite vue3 vite-plugin-vue-setup-extend less normalize.css mitt pinia vue-router npm create vuelatest npm i vite-plugin-vue-setup-extend -D npm i less -D npm i normalize.css -S ࿰…...
3. 用Ruby on Rails创建一个在线商城
哎呀,你这是想要我写一篇超长篇的Ruby on Rails教程啊!好吧,既然你这么热情,那我就勉为其难地给你来一篇生动有趣、充满比喻夸张讽刺修辞手法的教程吧! 1. 准备工作 1.1. 安装Ruby和Rails 1.1.1 安装Ruby 下载Ruby…...

jmeter常用配置元件介绍总结之配置元件
系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…...
SpringBoot获取请求参数
spring boot获取请求参数 文章目录 spring boot获取请求参数一、简单参数二、实体参数三、数组集合参数四、日期参数五、Json参数六、路径参数 开头概述 在Spring Boot框架中,处理HTTP请求并获取请求参数是开发Web应用程序中的一项基本任务。无论是简单的GET请求还是…...

【数据结构】树——顺序存储二叉树
写在前面 在学习数据结构前,我们早就听说大名鼎鼎的树,例如什么什么手撕红黑树大佬呀,那这篇笔记不才就深入浅出的介绍二叉树。 文章目录 写在前面一、树的概念及结构1.1、数的相关概念1.2、数的表示1.3 树在实际中的运用(表示文…...
Android中perform和handle方法的区别——以handleLaunchActivity与performLaunchActivity为例
在Android系统中,perform和handle方法经常出现在关键流程中,分别承担不同的职责。这种命名约定反映了框架设计中的分层思想,帮助开发者区分任务的调度与实现。本文通过handleLaunchActivity和performLaunchActivity这两个典型方法的源码分析&…...

聊聊依赖性测试
在软件测试中,我们常常面临一个挑战:多个模块之间高度耦合,任何一个模块的异常都可能导致整个系统崩溃。如何确保这些模块之间的协作无缝衔接?这就需要依赖性测试的助力! 什么是依赖性测试?它与功能测试、…...

C++11————线程库
thread 类的简单介绍 在 c11 之前,涉及到多线程问题,都是和平台相关的,比如 windows 和 linux 下各自有自己的接口,这使得代码的可移植性比较差。在 c11 中引入了线程库,使得 c在编程时不需要依赖第三方库了 函数名 …...
Java 动态代理初步
动态代理初步 package ReflectExercise;import ReflectExercise.pojo.BigStar; import ReflectExercise.pojo.ProxyUtil; import ReflectExercise.pojo.Star;/*** 动态代理* 无侵入的给方法增强功能*/ public class ReflectExercise {public static void main(String[] args) {…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...