sglang 部署Qwen2VL7B,大模型部署,速度测试,深度学习
sglang
项目github仓库:
https://github.com/sgl-project/sglang
项目说明书:
https://sgl-project.github.io/start/install.html
资讯:
https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup
快得离谱:

[外链图片转存中…(img-E3n1Ivz9-1731913508383)]
图来源:https://lmsys.org/blog/2024-09-04-sglang-v0-3/
Docker使用:
docker run --gpus device=0 \--shm-size 32g \-p 30000:30000 \-v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \--env "HF_TOKEN=abc-1234" \--ipc=host \-v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \lmsysorg/sglang:latest \python3 -m sglang.launch_server --model-path /Qwen2-VL --host 0.0.0.0 --port 30000 --chat-template qwen2-vl --context-length 8192 --log-level-http warning
启动成功:

接口文档:
http://101.136.22.140:30000/docs
速度测试代码
import time
from openai import OpenAI# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')# 定义图像路径
image_paths = ["/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]# 设置请求次数
num_requests = 10# 存储每个图像的平均响应时间
average_speeds = {}# 遍历每张图片
for image_path in image_paths:total_time = 0# 对每张图片执行 num_requests 次请求for _ in range(num_requests):start_time = time.time()# 发送请求并获取响应response = client.chat.completions.create(model="/Qwen2-VL",messages=[{'role': 'user','content': [{'type': 'text','text': 'Describe the image please',}, {'type': 'image_url','image_url': {'url': image_path,},}],}],temperature=0.8,top_p=0.8)# 记录响应时间elapsed_time = time.time() - start_timetotal_time += elapsed_time# 打印当前请求的响应内容(可选)print(f"Response for {image_path}: {response.choices[0].message.content}")# 计算并记录该图像的平均响应时间average_speed = total_time / num_requestsaverage_speeds[image_path] = average_speedprint(f"Average speed for {image_path}: {average_speed} seconds")# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():print(f"{image_path}: {avg_speed:.2f} seconds")
速度测试结果
sglang 测试结果:
| Model | 显存占用 (MiB) | 分辨率 | 处理时间 (秒) |
|---|---|---|---|
| Qwen2-VL-7B-Instruct | 70G | 256 x 256 | 1.71 |
| 512 x 512 | 1.52 | ||
| 768 x 768 | 1.85 | ||
| 1024 x 1024 | 2.05 | ||
| 1280 x 1280 | 1.88 | ||
| 2560 x 2560 | 3.26 |
纯transformer,不用加速框架,我之前的测了一张图的速度是:5.22 seconds,很慢。
附录-vllm速度测试
启动:
docker run --gpus device=0 \-v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \-v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \-p 30000:8000 \--ipc=host \vllm/vllm-openai:latest \--model /Qwen2-VL --gpu_memory_utilization=0.9
代码:
import time
import base64
from openai import OpenAI# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')# 定义图像路径
image_paths = ["/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]# 设置请求次数
num_requests = 10# 存储每个图像的平均响应时间
average_speeds = {}# 将图片转换为 Base64 编码的函数
def image_to_base64(image_path):with open(image_path, "rb") as img_file:return base64.b64encode(img_file.read()).decode('utf-8')# 遍历每张图片
for image_path in image_paths:total_time = 0# 将图片转换为 Base64 编码image_base64 = image_to_base64(image_path)# 对每张图片执行 num_requests 次请求for _ in range(num_requests):start_time = time.time()# 发送请求并获取响应response = client.chat.completions.create(model="/Qwen2-VL",messages=[{'role': 'user','content': [{'type': 'text','text': 'Describe the image please',}, {'type': 'image_url','image_url': {'url': f"data:image/jpeg;base64,{image_base64}", # 使用Base64编码的图片},}],}],temperature=0.8,top_p=0.8)# 记录响应时间elapsed_time = time.time() - start_timetotal_time += elapsed_time# 打印当前请求的响应内容(可选)print(f"Response for {image_path}: {response.choices[0].message.content}")# 计算并记录该图像的平均响应时间average_speed = total_time / num_requestsaverage_speeds[image_path] = average_speedprint(f"Average speed for {image_path}: {average_speed} seconds")# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():print(f"{image_path}: {avg_speed:.2f} seconds")
速度:
| Model | 显存占用 (MiB) | 分辨率 | 处理时间 (秒) |
|---|---|---|---|
| Qwen2-VL-72B-Instruct-GPTQ-Int4 | 70G | 256 x 256 | 1.50 |
| 512 x 512 | 1.59 | ||
| 768 x 768 | 1.61 | ||
| 1024 x 1024 | 1.67 | ||
| 1280 x 1280 | 1.81 | ||
| 2560 x 2560 | 1.97 |
https://www.dong-blog.fun/post/1856
相关文章:
sglang 部署Qwen2VL7B,大模型部署,速度测试,深度学习
sglang 项目github仓库: https://github.com/sgl-project/sglang 项目说明书: https://sgl-project.github.io/start/install.html 资讯: https://github.com/sgl-project/sgl-learning-materials?tabreadme-ov-file#the-first-sglang…...
fastadmin操作数据库字段为json、查询遍历each、多级下拉、union、php密码设置、common常用函数的使用小技巧
数据库中遇到的操作 查询字段是json的某个值 //获取数据库中某个字段是json中得某个值,进行查询,goods是表中字段,brand_id是json中要查詢的字段。//数据类型一定要对应要不然查询不出来。$map[json_extract(goods, "$.brand_id")]…...
UniApp在Vue3的setup语法糖下自定义组件插槽详解
UniApp在 Vue3的 setup 语法糖下自定义组件插槽详解 UniApp 是一个基于 Vue.js 的跨平台开发框架,可以用来开发微信小程序、H5、App 等多种平台的应用。Vue 3 引入了 <script setup> 语法糖,使得组件的编写更加简洁和直观。本文将详细介绍如何在 …...
springboot上传下载文件
RequestMapping(“bigJson”) RestController Slf4j public class TestBigJsonController { Resource private BigjsonService bigjsonService;PostMapping("uploadJsonFile") public ResponseResult<Long> uploadJsonFile(RequestParam("file")Mul…...
Python学习从0到1 day29 Python 高阶技巧 ⑦ 正则表达式
目录 一、正则表达式 二、正则表达式的三个基础方法 1.match 从头匹配 2.search(匹配规则,被匹配字符串) 3.findall(匹配规则,被匹配字符串) 三、元字符匹配 单字符匹配: 注: 示例&a…...
机器学习-web scraping
Web Scraping,通常称为网络抓取或数据抓取,是一种通过自动化程序从网页中提取数据的技术。以下是对Web Scraping的详细解释: 一、定义与原理 Web Scraping是指采用技术手段从大量网页中提取结构化和非结构化信息,并按照一定的规…...
移远通信5G RedCap模组RG255C-CN通过中国电信5G Inside终端生态认证
近日,移远通信5G RedCap模组RG255C-CN荣获中国电信颁发的5G Inside终端生态认证证书。这表明,该产品在5G基本性能、网络兼容性、安全特性等方面已经过严格评测且表现优异,将进一步加速推动5G行业终端规模化应用。 中国电信5G Inside终端生态认…...
Javaweb梳理17——HTMLCSS简介
Javaweb梳理17——HTML&CSS简介 17 HTML&CSS简介17.1 HTML介绍17.2 快速入门17.3 基础标签17.3 .1 标题标签17.3.2 hr标签17.3.3 字体标签17.3.4 换行17.3.8 案例17.3.9 图片、音频、视频标签17.3.10 超链接标签17.3.11 列表标签17.3.12 表格标签17.3.11 布局标签17.3.…...
【Android、IOS、Flutter、鸿蒙、ReactNative 】自定义View
Android Java 自定义View 步骤 创建一个新的Java类,继承自View、ViewGroup或其他任何一个视图类。 如果需要,重写构造函数以支持不同的初始化方式。 重写onMeasure方法以提供正确的测量逻辑。 重写onDraw方法以实现绘制逻辑。 根据需要重写其他方法&…...
win11跳过联网激活步骤
win11跳过联网激活步骤 win11跳过联网激活步骤方法一:使用Shift F10快捷键(推荐)1. 启动Windows 112. 选择键盘布局或输入法3. 是否想要添加第二种键盘布局4. 让我们为你连接到网络5. 调出管理员模式CMD6. 耐心等待自动重启7. 启动Windows 1…...
利用c语言详细介绍下冒泡排序
软件开发过程中,排序算法是常规且使用众多的方法之一,而冒泡算法又是排序算法中最常规且基本的算法。今天我们利用c语言,图文详细介绍下冒泡算法。 一、图文介绍 我们输入一个数组,数组为【10,5,3…...
C# 面向对象
C# 面向对象编程 面向过程:一件事情分成多个步骤来完成。 把大象装进冰箱 (面向过程化设计思想)。走一步看一步。 1、打开冰箱门 2、把大象放进冰箱 3、关闭冰箱门 面向对象:以对象作为主体 把大象装进冰箱 1、抽取对象 大象 冰箱 门 ࿰…...
android wifi扫描的capability
混合型加密android11 8155与普通linux设备扫描到的安全字段差别 android应用拿到关于wifi安全的字段: systembar-WifiBroadcastReceiver---- scanResult SSID: Redmi_697B, BSSID: a4:39:b3:70:8c:20, capabilities: [WPA-PSK-TKIPCCMP][WPA2-PSK-TKIPCCMP][RSN-PSK…...
datawhale 2411组队学习:模型压缩4 模型量化理论(数据类型、int8量化方法、PTQ和QWT)
文章目录 一、数据类型1.1 整型1.2 定点数1.3 浮点数1.3.1 正规浮点数(fp32)1.3.2 非正规浮点数(fp32)1.3.3 其它数据类型1.3.4 浮点数误差1.3.5 浮点数导致的模型训练问题 二、量化基本方法2.1 int8量化2.1.1 k-means 量化2.1.2 …...
数据分析-48-时间序列变点检测之在线实时数据的CPD
文章目录 1 时间序列结构1.1 变化点的定义1.2 结构变化的类型1.2.1 水平变化1.2.2 方差变化1.3 变点检测1.3.1 离线数据检测方法1.3.2 实时数据检测方法2 模拟数据2.1 模拟恒定方差数据2.2 模拟变化方差数据3 实时数据CPD3.1 SDAR学习算法3.2 Changefinder模块3.3 恒定方差CPD3…...
POD-Transformer多变量回归预测(Matlab)
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现POD-Transformer多变量回归预测,本征正交分解数据降维融合Transformer多变量回归预测,使用SVD进行POD分解(本征正交分解); 2.运行环境Matlab20…...
Hadoop生态圈框架部署(七)- MySQL安装与配置教程
文章目录 前言一、MySQL安装与配置(手动部署)1. 下载MySQL2. 上传安装包3. 解压HBase安装包4. 配置4.1 配置 MySQL 的主配置文件 my.cnf4.2 配置 MySQL 服务的脚本 5. 初始化MySQL数据库6. 创建快捷方式7. 启动MySQL服务8. 修改MySQL登录密码8.1 使用临时…...
视频直播5G CPE解决方案:ZX7981PG/ZX7981PMWIFI6网络覆盖
方案背景 视频直播蓬勃发展的当下,传统直播网络联网方式的局限性越来越明显。目前传统直播的局限性主要集中在以下几个方面: 传统直播间网络架构条件有限,可连接WIFI数量少,多终端同时直播难以维持;目前4G网络带宽有限…...
技术周刊 |Google 2024 年首届 Web AI 峰会回顾
大家好,我是童欧巴。见字如面,万事胜意,欢迎来到第 134 期周刊。 大厨推荐 Google 2024 年首届 Web AI 峰会回顾 不仅包括来自谷歌团队的演讲者,如 Chrome 和 MediaPipe,还包括第三方代表,如英特尔、Hug…...
web——upload-labs——第十二关——%00截断
查看源码 分析源码我们可以知道,这里是基于白名单过滤,只允许上传jpg,png,gif,但是这里注意第八行,上传路径是可以控制的,所以可以利用%00截断,来达到上传木马的目的。这里要注意一下,%00截断想…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
