机器学习算法模型系列——Adam算法
Adam是一种自适应学习率的优化算法,结合了动量和自适应学习率的特性。
主要思想是根据参数的梯度来动态调整每个参数的学习率。
核心原理包括:
-
动量(Momentum):Adam算法引入了动量项,以平滑梯度更新的方向。这有助于加速收敛并减少震荡。
-
自适应学习率:Adam算法计算每个参数的自适应学习率,允许不同参数具有不同的学习速度。
-
偏差修正(Bias Correction):Adam算法在初期迭代中可能受到偏差的影响,因此它使用偏差修正来纠正这个问题。
Adam相关公式
初始化:
-
参数:
-
学习率:
-
梯度估计的移动平均(一阶矩):
-
梯度平方的移动平均(二阶矩):
-
时间步数:
每个迭代步骤:
-
计算梯度:
-
更新一阶矩:
-
更新二阶矩:
-
修正偏差(Bias Correction):
和
-
更新参数:
,其中
是一个小的常数,以防分母为零。
项目:基于Adam优化算法的神经网络训练
在这个项目中,我们将使用Adam优化算法来训练一个简单的神经网络,以解决二分类问题。我们将深入讨论Adam算法的原理和公式,并展示如何在Python中实施它。最后,我们将绘制学习曲线,以可视化模型的训练进展。
项目:基于Adam优化算法的神经网络训练
在这个项目中,我们将使用Adam优化算法来训练一个简单的神经网络,以解决二分类问题。我们将深入讨论Adam算法的原理和公式,并展示如何在Python中实施它。最后,我们将绘制学习曲线,以可视化模型的训练进展。
模型训练
使用Python代码实现Adam算法来训练一个二分类的神经网络。
使用Python中的NumPy库来进行计算,并使用一个合成的数据集来演示。
import numpy as np
import matplotlib.pyplot as plt# 定义模型和数据
np.random.seed(42)
X = np.random.rand(100, 2) # 特征数据
y = (X[:, 0] + X[:, 1] > 1).astype(int) # 二分类标签# 定义神经网络模型
def sigmoid(x):return 1 / (1 + np.exp(-x))def predict(X, weights):return sigmoid(np.dot(X, weights))# 初始化参数和超参数
theta = np.random.rand(2) # 参数初始化
alpha = 0.1 # 学习率
beta1 = 0.9 # 一阶矩衰减因子
beta2 = 0.999 # 二阶矩衰减因子
epsilon = 1e-8 # 用于防止分母为零# 初始化Adam算法所需的中间变量
m = np.zeros(2)
v = np.zeros(2)
t = 0# 训练模型
num_epochs = 100
for epoch in range(num_epochs):for i in range(len(X)):t += 1gradient = (predict(X[i], theta) - y[i]) * X[i]m = beta1 * m + (1 - beta1) * gradientv = beta2 * v + (1 - beta2) * gradient**2m_hat = m / (1 - beta1**t)v_hat = v / (1 - beta2**t)theta -= alpha * m_hat / (np.sqrt(v_hat) + epsilon)# 输出训练后的参数
print("训练完成后的参数:", theta)# 定义损失函数
def loss(X, y, weights):y_pred = predict(X, weights)return -np.mean(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))# 记录损失值
loss_history = []
for i in range(len(X)):loss_history.append(loss(X[i], y[i], theta))# 绘制损失函数曲线
plt.plot(range(len(X)), loss_history)
plt.xlabel("Iteration")
plt.ylabel("Loss Function Value")
plt.title("Change in Loss Function Over Time")
plt.show()
这个图形将显示损失函数值随着迭代次数的减小而减小,这表明Adam优化算法成功地训练了模型。
相关文章:

机器学习算法模型系列——Adam算法
Adam是一种自适应学习率的优化算法,结合了动量和自适应学习率的特性。 主要思想是根据参数的梯度来动态调整每个参数的学习率。 核心原理包括: 动量(Momentum):Adam算法引入了动量项,以平滑梯度更新的方向…...

Qt按钮类-->day09
按钮基类 QAbstractButton 标题与图标 // 参数text的内容显示到按钮上 void QAbstractButton::setText(const QString &text); // 得到按钮上显示的文本内容, 函数的返回就是 QString QAbstractButton::text() const;// 得到按钮设置的图标 QIcon icon() const; // 给按钮…...

基于xr-frame实现微信小程序的手部、手势识别3D模型叠加和石头剪刀布游戏功能
前言 xr-frame是一套小程序官方提供的XR/3D应用解决方案,基于混合方案实现,性能逼近原生、效果好、易用、强扩展、渐进式、遵循小程序开发标准。xr-frame在基础库v2.32.0开始基本稳定,发布为正式版,但仍有一些功能还在开发&#…...

基于Kafka2.1解读Consumer原理
文章目录 概要整体架构流程技术名词解释技术细节coordinatorfetcherclientconsumer#poll的主要流程 全局总览小结 概要 继上一篇讲Producer原理的文章过去已经一个多月了,今天来讲讲Consumer的原理。 其实源码早就读了部分了,但是最近工作比较忙&#x…...

深度学习:ResNet每一层的输出形状
其中 /**在输出通道数为64、步幅为2的7 7卷积层后,接步幅为2的3 3的最大汇聚层,与GoogLeNet区别是每个卷积层后增加了批量规范层**/ b1 nn.Sequential(nn.Conv2d(1, 64, kernel_size7, stride2, padding3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_s…...
国内几大网络安全公司介绍 - 网络安全
Posted by zhaol under 安全 , 电信 , 评论 , 中国 中国国内的安全市场进入“战国时期”,启明星辰、绿盟、天融信、安氏、亿阳、联想网御、华为等战国七雄拥有雄厚的客户资源和资金基础,帐前皆有勇猛善战之士,渐渐开始统领国内安全市场的潮流…...
修改Android Studio项目配置JDK路径和项目Gradle路径的GUI工具
概述 本工具提供了一个基于Python Tkinter的图形用户界面(GUI),用于帮助用户搜索并更新Android Studio项目中的config.properties文件里的java.home路径,以及workspace.xml文件中的last_opened_file_path路径。该工具旨在简化手动…...

✅DAY30 贪心算法 | 452. 用最少数量的箭引爆气球 | 435. 无重叠区间 | 763.划分字母区间
452. 用最少数量的箭引爆气球 解题思路:首先把原数组按左边界进行排序。然后比较[i-1]的右边界和[i]的左边界是否重叠,如果重叠,更新当前右边界为最小右边界和[i1]的左边界判断是重叠。 class Solution:def findMinArrowShots(self, points:…...

关于Redis单线程模型以及IO多路复用的理解
IO多路复用 -> redis主线程 -> 事件队列 -> 事件处理器 1.IO多路复用机制的作用: 操作系统的多路复用机制(如 epoll、select)负责监听多个文件描述符(如客户端连接)上的事件。 当某个文件描述符上的事件就绪…...

学习ASP.NET Core的身份认证(基于Cookie的身份认证1)
B/S架构程序可通过Cookie、Session、JWT、证书等多种方式认证用户身份,虽然之前测试过用户登录代码,也学习过开源项目中的登录认证,但其实还是对身份认证疑惑甚多,就比如登录验证后用户信息如何保存、客户端下次连接时如何获取用户…...

奇门遁甲中看债务时用神该怎么取?
奇门遁甲中看债务的用神 一、值符 值符在债务关系中可代表债权人(放贷人)。例如在预测放贷时,以值符为放贷人,如果值符克天乙(借贷人)或者天乙生值符,这种情况下可以放贷;反之&#…...
Redis 集群主要有以下几种类型
Redis 集群主要有以下几种类型: 主从复制模式: 这种模式包含一个主数据库实例(master)与一个或多个从数据库实例(slave)。客户端可以对主数据库进行读写操作,对从数据库进行读操作,主…...

使用 Axios 拦截器优化 HTTP 请求与响应的实践
目录 前言1. Axios 简介与拦截器概念1.1 Axios 的特点1.2 什么是拦截器 2. 请求拦截器的应用与实践2.1 请求拦截器的作用2.2 请求拦截器实现 3. 响应拦截器的应用与实践3.1 响应拦截器的作用3.2 响应拦截器实现 4. 综合实例:一个完整的 Axios 配置5. 使用拦截器的好…...

mini-lsm通关笔记Week2Day5
项目地址:https://github.com/skyzh/mini-lsm 个人实现地址:https://gitee.com/cnyuyang/mini-lsm Summary 在本章中,您将: 实现manifest文件的编解码。系统重启时从manifest文件中恢复。 要将测试用例复制到启动器代码中并运行…...
mybatis的动态sql用法之排序
概括 在最近的开发任务中,涉及到了一些页面的排序,其中最为常见的就是时间的降序和升序。这个有的前端控件就可以完成,但是对于一些无法用前端控件的,只能通过后端来进行解决。 后端的解决方法就是使用mybatis的动态sql拼接。 …...
OneToMany 和 ManyToOne
在使用 ORM(如 TypeORM)进行实体关系设计时,OneToMany 和 ManyToOne 是非常重要的注解,常用来表示两个实体之间的一对多关系。下面通过例子详细说明它们的使用场景和工作方式。 OneToMany 和 ManyToOne 的基本概念 ManyToOne 表示…...

《生成式 AI》课程 第3講 CODE TASK 任务3:自定义任务的机器人
课程 《生成式 AI》课程 第3講:訓練不了人工智慧嗎?你可以訓練你自己-CSDN博客 我们希望你创建一个定制的服务机器人。 您可以想出任何您希望机器人执行的任务,例如,一个可以解决简单的数学问题的机器人0 一个机器人,…...

反转链表、链表内指定区间反转
反转链表 给定一个单链表的头结点pHead(该头节点是有值的,比如在下图,它的val是1),长度为n,反转该链表后,返回新链表的表头。 如当输入链表{1,2,3}时,经反转后,原链表变…...
Debezium系列之:Debezium3版本使用快照过程中的指标
Debezium系列之:Debezium3版本使用快照过程中的指标 一、背景二、技术原理三、增量快照四、阻塞快照指标一、背景 使用快照技术的过程中可以观察指标,从而确定快照的进度二、技术原理 Debezium系列之:Debezium 中的增量快照Debezium系列之:Incremental snapshotting设计原理…...
第一讲,Opencv计算机视觉基础之计算机视觉概述
深度剖析计算机视觉:定义、任务及未来发展趋势 引言 计算机视觉(Computer Vision)是人工智能的重要分支之一,旨在让机器通过视觉感知和理解环境。随着深度学习的快速发展,计算机视觉在自动驾驶、安防监控、医疗影像等…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...