当前位置: 首页 > news >正文

点云-半径搜索法-Radius Search

  • 核心作用
    • 在于通过设定一个==空间范围(半径)==寻找点的邻域点集合,从而支持对局部区域的分析和操作。
  • 因为空间半径不会随着密度变化而改变点云输出的结果,处理密度变化大的点云时很重要。

在这里插入图片描述

应用场景

  1. 稀疏点检测:当点云密度不均匀时,半径搜索可以检测稀疏区域。
  2. 局部平滑:利用半径内点的均值更新点坐标,去除噪声。
  3. 体素滤波 (Voxel Filter):基于半径选取中心点,实现点云降采样。

场景中的作用

  1. 邻域点搜索
    • 用于寻找查询点附近的所有点,可以用于密度估计、曲率计算、法向量估计等。
  2. 点云降噪与分割
    • 半径搜索可以根据邻域密度识别孤立点(噪声)或区域边界。
  3. 稀疏与下采样
    • 在点云简化过程中,通过设置固定半径找到邻域点,以均匀选取代表性点。
  4. 点云配准与滤波
    • 配准算法(如ICP)中,可以用半径搜索代替KNN搜索,找到距离目标点云一定范围内的点。

计算

半径搜索基于一个查询点 ( p ),在给定的半径 ( r ) 内找到所有满足条件的点 ( p_i )。具体计算如下:

  1. 距离定义

    • 同样使用欧几里得距离: d ( p , p i ) = ( x − x i ) 2 + ( y − y i ) 2 + ( z − z i ) 2 d(p, p_i) = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2} d(p,pi)=(xxi)2+(yyi)2+(zzi)2
    • 满足 d ( p , p i ) ≤ r d(p, p_i) \leq r d(p,pi)r 的点 ( p_i ) 被视为邻居点。
  2. 搜索方式

    • Brute Force
      • 对所有点计算距离,保留距离小于 ( r ) 的点,复杂度为 ( O(n) )。
    • 加速方法
      • 使用 kd-treeOctree 等空间划分结构,搜索效率提升至 ( O(\log n) )。
  3. 半径范围结果

    • 搜索结果为一个点集合,表示所有邻域点的索引或坐标。

实现框架

实现框架实现:PCLOpen3Dscikit-learn

import open3d as o3d
import numpy as np# 生成随机点云
points = np.random.rand(1000, 3)  # 1000个3D点
query_point = points[0]  # 查询点
radius = 0.1  # 搜索半径# 创建点云对象
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)# 构建kd-tree
pcd_tree = o3d.geometry.KDTreeFlann(pcd)# 半径搜索
indices = pcd_tree.search_radius_vector_3d(query_point, radius)[1]print("查询点:", query_point)
print("半径邻域点索引:", indices)
print("邻域点数量:", len(indices))

相关文章:

点云-半径搜索法-Radius Search

核心作用 在于通过设定一个空间范围(半径)寻找点的邻域点集合,从而支持对局部区域的分析和操作。 因为空间半径不会随着密度变化而改变点云输出的结果,处理密度变化大的点云时很重要。 应用场景 稀疏点检测:当点云密度…...

P11290 【MX-S6-T2】「KDOI-11」飞船

题目大意:有i种加油站,最开始速度为1,每次加油可以使速度*v,每次加油有一个时间代价,求到达终点所需最小时间。 思路:不妨考虑dp,贪心是错误的。 对于速度而言,,所以速…...

WebGIS地图框架有哪些?

地理信息系统(GIS)已经成为现代应用开发中不可或缺的一部分,尤其在前端开发中。随着Web技术的快速发展,许多强大而灵活的GIS框架涌现出来,为开发人员提供了丰富的工具和功能,使他们能够创建交互式、高性能的…...

量化加速知识点(整理中。。。)

量化的基本概念 通过减少模型中计算精度,从而减少模型计算所需要的访存量。 参考...

BLIP-2模型的详解与思考

大模型学习笔记------BLIP-2模型的详解与思考 1、BLIP-2框架概述2、BLIP-2网络结构详解3、BLIP-2的几点思考 上一篇文章上文中讲解了 BLIP(Bootstrapping Language-Image Pretraining)模型的一些思考,本文将讲述一个BLIP的升级版 BLIP-2&am…...

2024年11月22日 十二生肖 今日运势

小运播报:2024年11月22日,星期五,农历十月廿二 (甲辰年乙亥月庚寅日),法定工作日。 红榜生肖:马、猪、狗 需要注意:牛、蛇、猴 喜神方位:西北方 财神方位&#xff1a…...

小米C++ 面试题及参考答案上(120道面试题覆盖各种类型八股文)

进程和线程的联系和区别 进程是资源分配的基本单位,它拥有自己独立的地址空间、代码段、数据段和堆栈等。线程是进程中的一个执行单元,是 CPU 调度的基本单位。 联系方面,线程是进程的一部分,一个进程可以包含多个线程。它们都用于…...

SQL SELECT 语句:基础与进阶应用

SQL SELECT 语句:基础与进阶应用 SQL(Structured Query Language)是一种用于管理关系数据库的编程语言。在SQL中,SELECT语句是最常用的命令之一,用于从数据库表中检索数据。本文将详细介绍SELECT语句的基础用法&#…...

微服务即时通讯系统的实现(服务端)----(1)

目录 1. 项目介绍和服务器功能设计2. 基础工具安装3. gflags的安装与使用3.1 gflags的介绍3.2 gflags的安装3.3 gflags的认识3.4 gflags的使用 4. gtest的安装与使用4.1 gtest的介绍4.2 gtest的安装4.3 gtest的使用 5 Spdlog日志组件的安装与使用5.1 Spdlog的介绍5.2 Spdlog的安…...

《Spring 依赖注入方式全解析》

一、Spring 依赖注入概述 Spring 依赖注入(Dependency Injection,DI)是一种重要的设计模式,它在 Spring 框架中扮演着关键角色。依赖注入的核心概念是将对象所需的依赖关系由外部容器(通常是 Spring 容器)进…...

【C++动态规划】1411. 给 N x 3 网格图涂色的方案数|1844

本文涉及知识点 C动态规划 LeetCode1411. 给 N x 3 网格图涂色的方案数 提示 你有一个 n x 3 的网格图 grid ,你需要用 红,黄,绿 三种颜色之一给每一个格子上色,且确保相邻格子颜色不同(也就是有相同水平边或者垂直…...

外包干了3年,技术退步明显...

先说情况,大专毕业,18年通过校招进入湖南某软件公司,干了接近6年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能…...

SpringBoot 2.x 整合 Redis

整合 1&#xff09;添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <!-- 如果没有使用下面给出的工具类&#xff0c;那么就不需要引入 -…...

React的API✅

createContext createContext要和useContext配合使用&#xff0c;可以理解为 “React自带的redux或mobx” &#xff0c;事实上redux就是用context来实现的。但是一番操作下来我还是感觉&#xff0c;简单的context对视图的更新的细粒度把控比不上mobx&#xff0c;除非配合memo等…...

什么是全渠道客服中心?都包括哪些电商平台?

什么是全渠道客服中心&#xff1f;都包括哪些电商平台&#xff1f; 作者&#xff1a;开源呼叫中心系统 FreeIPCC&#xff0c;Github地址&#xff1a;https://github.com/lihaiya/freeipcc 全渠道客服中心是一种能够同时接入并处理来自多个渠道客户咨询和请求的综合服务平台。以…...

Jtti:如何知晓服务器的压力上限?具体的步骤和方法

了解服务器的压力上限(也称为性能极限或容量)是确保系统在高负载下仍能稳定运行的重要步骤。这通常通过压力测试(也称为负载测试或性能测试)来实现。以下是详细的步骤和方法来确定服务器的压力上限&#xff1a; 1. 定义测试目标和指标 在进行压力测试前&#xff0c;明确测试目标…...

贪心算法(1)

目录 柠檬水找零 题解&#xff1a; 代码&#xff1a; 将数组和减半的最少操作次数&#xff08;大根堆&#xff09; 题解&#xff1a; 代码&#xff1a; 最大数&#xff08;注意 sort 中 cmp 的写法&#xff09; 题解&#xff1a; 代码&#xff1a; 摆动序列&#xff0…...

SpringBoot,IOC,DI,分层解耦,统一响应

目录 详细参考day05 web请求 1、BS架构流程 2、RequestParam注解 完成参数名和形参的映射 3、controller接收json对象&#xff0c;使用RequestBody注解 4、PathVariable注解传递路径参数 5、ResponseBody&#xff08;return 响应数据&#xff09; RestController源码 6、统一响…...

目标驱动学习python动力

文章目录 迟迟未开始的原因打破思维里的围墙抛砖引玉爬虫 结束词 迟迟未开始的原因 其实我也是很早就知道有python&#xff0c;当时听说这个用于做测试不错&#xff0c;也就一直没有提起兴趣&#xff0c;后来人工智能火了之后&#xff0c;再次接触python&#xff0c;安装好pyth…...

力扣-Hot100-回溯【算法学习day.39】

前言 ###我做这类文档一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;&#xff09;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非常非常高滴&am…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...