当前位置: 首页 > news >正文

问题: redis-高并发场景下如何保证缓存数据与数据库的最终一致性

在高并发场景下,Redis 通常用作缓存层,与数据库结合使用以提高系统的性能。为了保证缓存数据与数据库的最终一致性,通常采用的有双写机制、缓存失效机制,基于双写机制、缓存失效机制又衍生出来了消息队列、事件驱动架构等

常见机制

常见的机制如下,个人理解无非是先后或各种手段操作数据库、redis,代码ai给写的示列只需看懂即可。

  1. 双写机制
    在更新数据库的同时,同步更新缓存。
    适用于写操作较少的场景
 public class CacheService {private final JdbcTemplate jdbcTemplate;private final RedisTemplate<String, Object> redisTemplate;public void updateData(String key, String value) {// 更新数据库jdbcTemplate.update("UPDATE table SET value = ? WHERE key = ?", value, key);// 更新缓存redisTemplate.opsForValue().set(key, value);}
  1. 缓存失效机制
    在更新数据库后,删除缓存中的旧数据,读取数据时候时写入缓存
    适用于写操作频繁的场景。
 public class CacheService {private final JdbcTemplate jdbcTemplate;private final RedisTemplate<String, Object> redisTemplate;public void updateData(String key, String value) {// 更新数据库jdbcTemplate.update("UPDATE table SET value = ? WHERE key = ?", value, key);// 删除缓存redisTemplate.delete(key);}public String getData(String key) {// 从缓存中获取数据String value = (String) redisTemplate.opsForValue().get(key);if (value == null) {// 缓存未命中,从数据库中获取数据value = jdbcTemplate.queryForObject("SELECT value FROM table WHERE key = ?", new Object[]{key}, String.class);if (value != null) {// 将数据写入缓存redisTemplate.opsForValue().set(key, value);}}return value;}}
  1. 消息队列机制
    使用消息队列异步更新redis,确保数据的一致性。
    适用于高并发写操作的场景。
  import com.rabbitmq.client.Channel;import com.rabbitmq.client.Connection;import com.rabbitmq.client.ConnectionFactory;public class CacheService {private final JdbcTemplate jdbcTemplate;private final RedisTemplate<String, Object> redisTemplate;public void updateData(String key, String value) {// 更新数据库jdbcTemplate.update("UPDATE table SET value = ? WHERE key = ?", value, key);// 发送消息到消息队列sendUpdateMessage(key, value);}private void sendUpdateMessage(String key, String value) {ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");try (Connection connection = factory.newConnection();Channel channel = connection.createChannel()) {channel.queueDeclare("cache_update_queue", true, false, false, null);channel.basicPublish("", "cache_update_queue", null, (key + ":" + value).getBytes());} catch (Exception e) {e.printStackTrace();}}public void consumeUpdateMessages() {ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");try (Connection connection = factory.newConnection();Channel channel = connection.createChannel()) {channel.queueDeclare("cache_update_queue", true, false, false, null);DeliverCallback deliverCallback = (consumerTag, delivery) -> {String message = new String(delivery.getBody(), "UTF-8");String[] parts = message.split(":");String key = parts[0];String value = parts[1];// 更新缓存redisTemplate.opsForValue().set(key, value);};channel.basicConsume("cache_update_queue", true, deliverCallback, consumerTag -> {});} catch (Exception e) {e.printStackTrace();}}}
  1. 事件驱动机制
    使用事件驱动架构,当数据库数据发生变化时,触发事件,事件处理器负责更新缓存。
    适用于复杂的数据更新逻辑。
   import org.springframework.context.ApplicationEventPublisher;import org.springframework.context.ApplicationEventPublisherAware;import org.springframework.stereotype.Service;@Servicepublic class CacheService implements ApplicationEventPublisherAware {private final JdbcTemplate jdbcTemplate;private final RedisTemplate<String, Object> redisTemplate;private ApplicationEventPublisher eventPublisher;public void updateData(String key, String value) {// 更新数据库jdbcTemplate.update("UPDATE table SET value = ? WHERE key = ?", value, key);// 发布事件eventPublisher.publishEvent(new DataUpdatedEvent(this, key, value));}@Overridepublic void setApplicationEventPublisher(ApplicationEventPublisher applicationEventPublisher) {this.eventPublisher = applicationEventPublisher;}@Servicepublic class EventListener {private final RedisTemplate<String, Object> redisTemplate;@org.springframework.context.event.EventListenerpublic void handleDataUpdatedEvent(DataUpdatedEvent event) {// 更新缓存redisTemplate.opsForValue().set(event.getKey(), event.getValue());}}}public class DataUpdatedEvent extends ApplicationEvent {private final String key;private final String value;public DataUpdatedEvent(Object source, String key, String value) {super(source);this.key = key;this.value = value;}public String getKey() {return key;}public String getValue() {return value;}}
  1. 定期补偿机制
    定期对缓存和数据库的数据进行校验,发现不一致时进行补偿操作。
    适用于对数据一致性要求较高的场景。
 import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class DataConsistencyChecker {private final JdbcTemplate jdbcTemplate;private final RedisTemplate<String, Object> redisTemplate;private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);public void startChecking() {scheduler.scheduleAtFixedRate(() -> {// 从数据库中获取所有数据List<Map<String, Object>> dataFromDB = jdbcTemplate.queryForList("SELECT key, value FROM table");for (Map<String, Object> row : dataFromDB) {String key = (String) row.get("key");String value = (String) row.get("value");// 从缓存中获取数据String cacheValue = (String) redisTemplate.opsForValue().get(key);if (!value.equals(cacheValue)) {// 数据不一致,更新缓存redisTemplate.opsForValue().set(key, value);}}}, 0, 1, TimeUnit.HOURS);}}

废弃缓存与更新缓存的取舍

由上面代码可看出 1和2 最大的区别在于更新数据库时到底是更新缓存还是删除缓存。
【废弃缓存】
优点:
操作简单,只需在更新数据库后删除缓存,下次读取时重新从数据库加载数据,减少了写的操作日数
缺点:
可能短暂不一致:在缓存删除后和新数据写入缓存前,可能会出现短暂的缓存不一致

【更新缓存】
优点:
数据强一致性:更新数据库和缓存同时进行,确保数据的一致性。
减少数据库读压力:缓存始终是最新的,减少了对数据库的读操作。
缺点:
复杂性增加:需要处理缓存更新失败的情况,可能需要回滚操作。
性能影响:每次更新操作都需要同时更新数据库和缓存,增加了操作的复杂性和时间

  • 写操作较少的场景:
    推荐使用更新缓存:因为写操作较少,更新缓存的额外开销相对较小,且可以确保数据的一致性。
  • 写操作频繁的场景:
    推荐使用废弃缓存:因为写操作频繁,更新缓存会增加系统的复杂性和开销,而废弃缓存可以减少缓存的写操作,降低系统负担。
  • 对数据一致性要求极高的场景:
    推荐使用更新缓存:尽管复杂性增加,但可以确保数据的强一致性。
  • 对性能要求较高且可以容忍短暂不一致的场景:
    推荐使用废弃缓存:可以减少数据库的读压力,提高系统的整体性能

淘汰缓存的顺序

https://blog.csdn.net/qq_39033181/article/details/119276120

【 方案一 】先淘汰缓存,再更新数据库
在并发量较大的情况下,会导致数据的不一致。
  1. A线程进行写操作,先成功淘汰缓存,但由于网络或其它原因,还未更新数据库
  2. B线程进行读操作,发现缓存中没有想要的数据,从数据库中读取到的是旧数据,并把旧数据放入缓存。此时数据库与缓存都是旧值,数据没有不一致
  3. A线程将数据库更新完成,数据库中是更新后的新数据,缓存中是更新前的旧数据,造成数据不一致。

【 方案二 】先更新数据库,再淘汰缓存
在并发量较大的情况下,会导致数据的短暂不一致,但是数据会最终一致。
  1. A线程进行写操作,更新数据库,还未淘汰缓存
  2. B线程从缓存中可以读取到旧数据,此时数据不一致
  3. A线程完成淘汰缓存操作,其它线程进行读操作,从数据库中读入最新数据,此时数据一致

延时双删

上述方案二更简单,在高并发场景下也能保证数据的最终一致性,但是如果我就想用方案一呢?

什么是延时双删

先删再更新数据库 过N秒后再删一次缓存,怎么实现放后面spring-cache集成里,大概有 1.延时队列、2.线程池实现延时任务。

小结

  • 这些都是理论,真正写代码,有cache框架,哪有这么烦,很多人喜欢问,那我们就得理,理了总比不理好,写这个就是怕我自己忘,呵
  • 无论怎么样在高并发场景下,我们也只能要求缓存数据与数据库的最终一致性,如果要求强一致性还要缓存干嘛呢?操作直接走DB更香
  • 大多数情况下建议使用淘汰缓存机制,然后先更新数据库,再淘汰缓存,满足大多数的场景了

相关文章:

问题: redis-高并发场景下如何保证缓存数据与数据库的最终一致性

在高并发场景下&#xff0c;Redis 通常用作缓存层&#xff0c;与数据库结合使用以提高系统的性能。为了保证缓存数据与数据库的最终一致性&#xff0c;通常采用的有双写机制、缓存失效机制&#xff0c;基于双写机制、缓存失效机制又衍生出来了消息队列、事件驱动架构等 常见机…...

Stable Diffusion核心网络结构——CLIP Text Encoder

&#x1f33a;系列文章推荐&#x1f33a; 扩散模型系列文章正在持续的更新&#xff0c;更新节奏如下&#xff0c;先更新SD模型讲解&#xff0c;再更新相关的微调方法文章&#xff0c;敬请期待&#xff01;&#xff01;&#xff01;&#xff08;本文及其之前的文章均已更新&…...

C语言-11-18笔记

1.C语言数据类型 类型存储大小值范围char1 字节-128 到 127 或 0 到 255unsigned char1 字节0 到 255signed char1 字节-128 到 127int2 或 4 字节-32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647unsigned int2 或 4 字节0 到 65,535 或 0 到 4,294,967,295short2 字节…...

数据结构_图的遍历

深度优先搜索遍历 遍历思想 邻接矩阵上的遍历算法 void Map::DFSTraverse() {int i, v;for (i 0; i < MaxLen; i){visited[i] false;}for (i 0; i < Vexnum; i){// 如果顶点未访问&#xff0c;则进行深度优先搜索if (visited[i] false){DFS(i);}}cout << endl…...

设计LRU缓存

LRU缓存 LRU缓存的实现思路LRU缓存的操作C11 STL实现LRU缓存自行设计双向链表 哈希表 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;缓存是一种常见的缓存淘汰算法&#xff0c;其基本思想是&#xff1a;当缓存空间已满时&#xff0c;移除最近最少使…...

python中的base64使用小笑话

在使用base64的时候将本地的图片转换为base64 代码如下&#xff0c;代码绝对正确 import base64 def image_to_data_uri(image_path):with open(image_path, rb) as image_file:image_data base64.b64encode(image_file.read()).decode(utf-8)file_extension image_path.sp…...

Python之time时间库

time时间库 概述获取当前时间time库datetime库区别 时间元组处理获取时间元组的各个部分时间戳和时间元组的转换 格式化时间格式化时间解析时间格式符号说明 暂停程序计时操作简单计时高精度计时计时器类的实现 UTC时间操作time库datetime库 概述 time是Python标准库中的一个模…...

Easyexcel(4-模板文件)

相关文章链接 Easyexcel&#xff08;1-注解使用&#xff09;Easyexcel&#xff08;2-文件读取&#xff09;Easyexcel&#xff08;3-文件导出&#xff09;Easyexcel&#xff08;4-模板文件&#xff09; 文件导出 获取 resources 目录下的文件&#xff0c;使用 withTemplate 获…...

国产linux系统(银河麒麟,统信uos)使用 PageOffice 动态生成word文件

PageOffice 国产版 &#xff1a;支持信创系统&#xff0c;支持银河麒麟V10和统信UOS&#xff0c;支持X86&#xff08;intel、兆芯、海光等&#xff09;、ARM&#xff08;飞腾、鲲鹏、麒麟等&#xff09;、龙芯&#xff08;LoogArch&#xff09;芯片架构。 数据区域填充文本 数…...

Window11+annie 视频下载器安装

一、ffmpeg环境的配置 下载annie之前需要先配置ffmpeg视频解码器。 网址下载地址 https://ffmpeg.org/download.html1、在网址中选择window版本 2、点击后选择该版本 3、下载完成后对压缩包进行解压&#xff0c;后进行环境的配置 &#xff08;1&#xff09;压缩包解压&#…...

SAP GR(Group Reporting)配置篇(七)

1.7、合并处理的配置 1.7.1 定义方法 菜单路径 组报表的SAP S4HANA >合并处理的配置>定义方法 事务代码 SPI4...

共建智能软件开发联合实验室,怿星科技助力东风柳汽加速智能化技术创新

11月14日&#xff0c;以“奋进70载&#xff0c;智创新纪元”为主题的2024东风柳汽第二届科技周在柳州盛大开幕&#xff0c;吸引了来自全国的汽车行业嘉宾、技术专家齐聚一堂&#xff0c;共襄盛举&#xff0c;一同探寻如何凭借 “新技术、新实力” 这一关键契机&#xff0c;为新…...

优化表单交互:在 el-select 组件中嵌入表格显示选项

介绍了一种通过 el-select 插槽实现表格样式数据展示的方案&#xff0c;可更直观地辅助用户选择。支持列配置、行数据绑定及自定义搜索&#xff0c;简洁高效&#xff0c;适用于复杂选择场景。完整代码见GitHub 仓库。 背景 在进行业务开发选择订单时&#xff0c;如果单纯的根…...

每日一题 LCR 079. 子集

LCR 079. 子集 主要应该考虑遍历的顺序 class Solution { public:vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;vector<int> temp;dfs(nums,0,temp,ans);return ans;}void dfs(vector<int> &…...

cocos creator 3.8 Node学习 3

//在Ts、js中 this指向当前的这个组件实例 //this下的一个数据成员node&#xff0c;指向组件实例化的这个节点 //同样也可以根据节点找到挂载的所有组件 //this.node 指向当前脚本挂载的节点//子节点与父节点的关系 // Node.parent是一个Node,Node.children是一个Node[] // th…...

微信小程序底部button,小米手机偶现布局错误的bug

预期结果&#xff1a;某button fixed 到页面底部&#xff0c;进入该页面时&#xff0c;正常显示button 实际结果&#xff1a;小米13pro&#xff0c;首次进入页面&#xff0c;button不显示。再次进入时&#xff0c;则正常展示 左侧为小米手机第一次进入。 遇到bug的解决思路&am…...

【计组】复习题

冯诺依曼型计算机的主要设计思想是什么&#xff1f;它包括哪些主要组成部分&#xff1f; 主要设计思想&#xff1a; ①采用二进制表示数据和指令&#xff0c;指令由操作码和地址码组成。 ②存储程序&#xff0c;程序控制&#xff1a;将程序和数据存放在存储器中&#xff0c;计算…...

Apache Maven 标准文件目录布局

Apache Maven 采用了一套标准的目录布局来组织项目文件。这种布局提供了一种结构化和一致的方式来管理项目资源&#xff0c;使得开发者更容易导航和维护项目。理解和使用标准目录布局对于有效的Maven项目管理至关重要。本文将探讨Maven标准目录布局的关键组成部分&#xff0c;并…...

Android 功耗分析(底层篇)

最近在网上发现关于功耗分析系列的文章很少&#xff0c;介绍详细的更少&#xff0c;于是便想记录总结一下功耗分析的相关知识&#xff0c;有不对的地方希望大家多指出&#xff0c;互相学习。本系列分为底层篇和上层篇。 大概从基础知识&#xff0c;测试手法&#xff0c;以及案例…...

【Xbim+C#】创建圆盘扫掠IfcSweptDiskSolid

基础回顾 https://blog.csdn.net/liqian_ken/article/details/143867404 https://blog.csdn.net/liqian_ken/article/details/114851319 效果图 代码示例 在前文基础上&#xff0c;增加一个工具方法&#xff1a; public static IfcProductDefinitionShape CreateDiskSolidSha…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...