【单点知识】基于PyTorch讲解自动编码器(Autoencoder)
文章目录
- 0. 前言
- 1. 自动编码器的基本概念
- 1.1 定义
- 1.2 目标
- 1.3 结构
- 2. PyTorch实现自动编码器
- 2.1 导入必要的库
- 2.2 定义自动编码器模型
- 2.3 加载数据
- 2.4 训练自动编码器
- 3. 自动编码器的意义
- 4. 自动编码器的应用
- 4.1 图像处理
- 4.2自然语言处理:
- 4.3推荐系统:
- 4.4异常检测:
- 5. 总结
0. 前言
按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。
自动编码器(Autoencoder)是一种无监督学习方法,主要用于降维、特征学习和生成任务。它通过学习输入数据的压缩表示(编码)并尝试重构输入数据(解码)来实现这一目的。本文将详细介绍自动编码器的基本概念、工作原理及其在PyTorch中的实现。
1. 自动编码器的基本概念
1.1 定义
自动编码器是一种神经网络,由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器将输入数据 x x x映射到一个低维的编码表示 z z z,解码器则将编码表示 z z z重构回输入数据 x ′ x' x′(理想情况下 x = x ′ x=x' x=x′)。整个过程可以表示为:
g ϕ ( x ) = z g_{\phi}(x)=z gϕ(x)=z
f θ ( z ) = x ′ f_{\theta}(z) = x' fθ(z)=x′

1.2 目标
自动编码器的目标是最小化重构误差,即输入数据 x x x和重构数据 x ′ x' x′ 之间的差异。常用的损失函数包括均方误差(Mean Squared Error, MSE)和二值交叉熵(Binary Cross-Entropy)。
1.3 结构
典型的自动编码器结构如下:
- 编码器:将输入数据 x x x 映射到低维编码 z z z。
- 解码器:将低维编码 z z z 重构回输入数据 x ′ x' x′。
2. PyTorch实现自动编码器
下面举一个MNIST数据的自动编码器实例(即上图的实现)。
2.1 导入必要的库
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
2.2 定义自动编码器模型
class Autoencoder(nn.Module):def __init__(self, input_dim, hidden_dim, latent_dim):super(Autoencoder, self).__init__()self.encoder = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, latent_dim))self.decoder = nn.Sequential(nn.Linear(latent_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, input_dim),nn.Sigmoid())def forward(self, x):z = self.encoder(x)x_output = self.decoder(z)return x_output, z
2.3 加载数据
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) #这里需要有MNIST数据集
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
2.4 训练自动编码器
input_dim = 28 * 28
hidden_dim = 128
latent_dim = 64
learning_rate = 0.001
num_epochs = 10model = Autoencoder(input_dim, hidden_dim, latent_dim)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)for epoch in range(num_epochs):for data in train_loader:img, _ = dataimg = img.view(img.size(0), -1) #把二维图像处理成一维向量optimizer.zero_grad()output, _ = model(img)loss = criterion(output, img)loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
输出为:
Epoch [1/10], Loss: 1.2363
Epoch [2/10], Loss: 1.2503
Epoch [3/10], Loss: 1.2281
Epoch [4/10], Loss: 1.2087
Epoch [5/10], Loss: 1.1894
Epoch [6/10], Loss: 1.1315
Epoch [7/10], Loss: 1.1038
Epoch [8/10], Loss: 1.0488
Epoch [9/10], Loss: 1.0164
Epoch [10/10], Loss: 1.0135
3. 自动编码器的意义
- 数据压缩:自动编码器可以用于数据压缩,通过学习数据的紧凑表示来减少存储空间和传输成本。
- 特征学习:自动编码器能够自动从原始数据中学习有用的特征,这些特征可以用于后续的任务,如分类、聚类等。
- 降噪:通过引入噪声并训练自动编码器去除噪声,可以构建去噪自动编码器(Denoising Autoencoder),用于数据去噪和增强数据质量。
- 生成模型:自动编码器可以用于生成新的数据样本,特别是在生成对抗网络(GANs)和变分自动编码器(VAEs)中。
4. 自动编码器的应用
4.1 图像处理
- 图像压缩:通过自动编码器学习图像的高效表示,可以实现图像的压缩和解压缩。
- 图像去噪:去噪自动编码器可以在图像中去除噪声,提高图像质量。
- 图像生成:生成新的图像样本,用于数据增强或创意生成任务。
4.2自然语言处理:
- 文本压缩:学习文本的紧凑表示,用于高效的存储和传输。
- 文本生成:生成新的文本样本,用于文本摘要、翻译等任务。
4.3推荐系统:
- 用户行为建模:通过自动编码器学习用户的隐含兴趣,用于个性化推荐。
- 特征提取:从用户行为数据中提取有用的特征,用于改进推荐算法。
4.4异常检测:
- 异常检测:通过训练自动编码器来重建正常数据,检测重建误差较大的数据点作为异常点。
- 生物信息学:基因表达数据分析:通过自动编码器学习基因表达数据的潜在结构,用于疾病诊断和药物发现。
5. 总结
自动编码器是一种强大的无监督学习方法,广泛应用于降维、特征学习和生成任务。本文详细介绍了自动编码器的基本概念、工作原理及其在PyTorch中的实现。
相关文章:
【单点知识】基于PyTorch讲解自动编码器(Autoencoder)
文章目录 0. 前言1. 自动编码器的基本概念1.1 定义1.2 目标1.3 结构 2. PyTorch实现自动编码器2.1 导入必要的库2.2 定义自动编码器模型2.3 加载数据2.4 训练自动编码器 3. 自动编码器的意义4. 自动编码器的应用4.1 图像处理4.2自然语言处理:4.3推荐系统:…...
Halo 正式开源: 使用可穿戴设备进行开源健康追踪
在飞速发展的可穿戴技术领域,我们正处于一个十字路口——市场上充斥着各式时尚、功能丰富的设备,声称能够彻底改变我们对健康和健身的方式。 然而,在这些光鲜的外观和营销宣传背后,隐藏着一个令人担忧的现实:大多数这些…...
summernote富文本批量上传音频,视频等附件
普通项目,HTML的summernote富文本批量上传音频,视频等附件(其他附件同理) JS和CSS的引入 <head><th:block th:include"include :: summernote-css" /> </head> <body><th:block th:include"include :: summernote-js" /> …...
IDEA如何设置编码格式,字符编码,全局编码和项目编码格式
前言 大家好,我是小徐啊。我们在开发Java项目(Springboot)的时候,一般都是会设置好对应的编码格式的。如果设置的不恰当,容易造成乱码的问题,这是要避免的。今天,小徐就来介绍下我们如何在IDEA…...
【计算机网络实验】之静态路由配置
【计算机网络实验】之静态路由配置 实验题目实验目的实验任务实验设备实验环境实验步骤路由器配置设置静态路由测试路由器之间的连通性配置主机PC的IP测试 实验题目 静态路由协议的配置 实验目的 熟悉路由器工作原理和机制;巩固静态路由理论;设计简单…...
十五届蓝桥杯赛题-c/c++ 大学b组
握手问题 很简单,相互牵手即可,但是要注意,第一个人只能与其他49个人牵手,所以开头是加上49 #include <iostream> using namespace std; int main() {int cnt0;for(int i49;i>7;i--){cnti;//cout<<i<<&quo…...
基础自动化系统的任务
基础自动化系统的任务主要包括实现自动控制、提高生产效率、减少人工干预等。以下是其具体任务的相关介绍: 实现自动控制 控制机器设备:基础自动化系统通过预设的程序和逻辑规则,对机器或设备进行自动控制和运行。执行特定任务:这…...
DBeaver添加地图查看器的自定义底图
DBeaver提供了空间数据在地图上查看的功能,地图查看器技术上基于Leaflet实现。 当我们在表格中选择图形列时,空间数据会叠加在右侧的地图查看器上。 其本质是在缓存中会生成一个静态页面,点击查看器左下角的“在浏览器中打开”,可…...
STM32F103C8T6实时时钟RTC
目录 前言 一、RTC基本硬件结构 二、Unix时间戳 2.1 unix时间戳定义 2.2 时间戳与日历日期时间的转换 2.3 指针函数使用注意事项 三、RTC和BKP硬件结构 四、驱动代码解析 前言 STM32F103C8T6外部低速时钟LSE(一般为32.768KHz)用的引脚是PC14和PC…...
Python Selenium:Web自动化测试与爬虫开发
Python Selenium:Web自动化测试与爬虫开发 Python Selenium:Web自动化测试与爬虫开发安装Selenium设置WebDriver基础示例页面元素交互处理JavaScript和Cookies浏览器控制屏幕截图Headless Mode结束会话错误处理与调试 ***本文由AI辅助生成*** Python Se…...
Java-07 深入浅出 MyBatis - 一对多模型 SqlMapConfig 与 Mapper 详细讲解测试
点一下关注吧!!!非常感谢!!持续更新!!! 大数据篇正在更新!https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了: MyBatisÿ…...
用CAXA CAD电子图板导入图框、标题栏并导出pdf的方法
1.导入图框: 点击调入图框->出现读入图框文件 一个一个点击,选择合适的图框 然后点击导入 2.导入标题栏: 调入标题栏->出现读入标题栏文件 一个一个点击,选择合适的标题栏,然后点击导入 3.导出pdf&#x…...
深入了解 Linux htop 命令:功能、用法与示例
文章目录 深入了解 Linux htop 命令:功能、用法与示例什么是 htop?htop 的安装htop的基本功能A区:系统资源使用情况B区:系统概览信息C区:进程列表D区:功能键快捷方式 与 top 的对比常见用法与示例实际场景应…...
JDK1.8新增特性
新特性: Lambda表达式: (语法三要素:参数、箭头、代码) JDK1.8引入的一种新语法Lambda表达式,它简化了匿名内部类的使用和提高代码的可读性。 /**正常写法创建Runable**/ Runnable runnable new Runnable() {Overridepublic voi…...
环境背景文本到语音转换
目录 概述演示效果核心逻辑使用方式 概述 本文所涉及的所有资源的获取方式:https://www.aspiringcode.com/content?id100000000027&uid2f1061526e3a4548ab2e111ad079ea8c 论文标题: 本文提出了 VoiceLDM,这是一种旨在生成准确遵循两种…...
后端数据增删改查基于Springboot+mybatis mysql 时间根据当时时间自动填充,数据库连接查询不一致,mysql数据库连接不好用
目录 后端数据增删改查Springboot 实体(entity)类引进添加UserMapper接口 创建对用的UserController注意数据库查询不一致新增数据更新删除postman测试 后端数据增删改查 基于之前构建系统,实现用户数据的CRUD。 打开navicat16,…...
《Python编程实训快速上手》第九天--调试技巧
一、抛异常 异常类型分为两类,第一类是Python自带的异常类型(见《Python编程快速上手》第一天---前三章打基础),第二类是自定义异常。 面对自定义异常类型,使用raise抛异常,类型值默认为Exception&#x…...
html5复习一
目标 1、html5介绍及开发工具 2、html5标签 3、文本样式 4、图片标签和超链接标签 知识点: 万维网的构成: 1、url:统一资源定位器 2、http/https:超文本传输协议 3、html:超文本标记语言 html的后缀名: .html 和 .htm html基本…...
SSL/TLS,SSL,TLS分别是什么
SSL/TLS,SSL,TLS分别是什么 SSL(Secure Sockets Layer,安全套接层) 定义与发展历程: SSL 是一种早期的网络安全协议,旨在为网络通信提供保密性、数据完整性和身份验证等安全保障。它最初由网景…...
css iframe标签使用
<iframe> 标签用于在网页中嵌入另一个 HTML 页面。它非常灵活,可用于嵌入内容,比如其他网站、视频、地图等。以下是有关 <iframe> 的详细介绍及使用方法: 基本语法 <iframe src"URL" width"宽度" height…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...
