Django实现智能问答助手-数据库方式读取问题和答案
扩展
- 增加问答数据库,通过 Django Admin 添加问题和答案。
- 实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。
- 使用前端框架(如 Bootstrap)增强用户界面
1.注册模型到 Django Admin(admin.py)
在应用目录下的admin.py文件中,注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作,代码如下:
from django.contrib import admin
from. import models
# 注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作
# Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了
admin.site.register(models.QuestionAnswer)
通过以上代码,Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了。
2. 数据库迁移
完成模型定义和注册后,需要进行数据库迁移,让 Django 根据模型创建相应的数据库表结构。打开命令行,进入项目根目录(包含manage.py文件的目录),依次执行以下命令:
python manage.py makemigrations
python manage.py migrate
- makemigrations命令会根据模型的定义生成迁移文件,它会检测模型的变化并生成相应的脚本,告诉 Django 要对数据库做哪些改变。
- migrate命令则是将这些迁移脚本实际应用到数据库中,创建或更新对应的表结构。
3. 完善视图逻辑(可能在views.py中)
之前的视图函数可以进一步优化,例如更好地处理可能出现的错误情况等,以下是优化后的示例(在views.py中):
from django.shortcuts import render
from.models import QuestionAnswerdef home(request):if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 这里可以实现简单的匹配逻辑,优化了判断,避免空查询answer = QuestionAnswer.objects.filter(question__icontains=user_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')
在这个优化后的视图函数中:
- 增加了对user_question是否为空的判断,如果为空则返回相应提示,让用户输入有效的问题,增强了用户交互的友好性。
- 对于找不到答案的情况,返回了更友好的提示语句。
4.实现更复杂的问答逻辑,使用自然语言处理(NLP)库
安装必要的库*
首先确保已经安装了 nltk 库,如果没有安装,可以通过以下命令安装:
pip install nltk
导入必要的模块和下载相关资源(针对 nltk),views.py文件
from django.shortcuts import render
from.models import QuestionAnswer
import nltk
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords# 下载nltk所需的停用词资源(只需执行一次,可在项目启动时或首次运行相关代码时)
nltk.download('stopwords')
修改后的视图函数 home
def home(request):if request.method == 'GET':return render(request, 'qa/home.html', {'response': ""})if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 进行自然语言处理相关的预处理操作stemmer = PorterStemmer()stop_words = set(stopwords.words('english'))# 对用户问题进行分词、词干提取、停用词去除等预处理words = nltk.word_tokenize(user_question)words = [stemmer.stem(word) for word in words if word not in stop_words]# 重新组合处理后的问题processed_question = " ".join(words)# 这里可以实现更复杂的匹配逻辑,基于预处理后的问题进行查找answer = QuestionAnswer.objects.filter(question__icontains=processed_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')
在上述修改后的代码中:
- 首先导入了 nltk
相关的模块用于进行自然语言处理操作,包括词干提取(PorterStemmer)和获取停用词(stopwords)。 - 在处理 POST 请求且用户输入了有效问题后,对用户问题进行了一系列自然语言处理的预处理操作: 先创建了词干提取器
PorterStemmer 和获取了英语的停用词集合。 - 对用户问题进行分词,然后对每个分词进行词干提取并去除停用词,最后重新组合成处理后的问题。
- 基于处理后的问题在 QuestionAnswer 模型中进行答案的查找匹配,根据是否找到答案来设置相应的 response值并返回给模板进行展示。
5.在数据库中预先输入问题和答案

这样就可以在页面上通过数据库的方式读取问题和答案
相关文章:
Django实现智能问答助手-数据库方式读取问题和答案
扩展 增加问答数据库,通过 Django Admin 添加问题和答案。实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。使用前端框架(如 Bootstrap)增强用户界面 1.注册模型到 Django Admin(admin.py…...
stm32利用LED配置基础寄存器+体验滴答定时器+hal库环境配置
P1 LED控制与流水灯效果实现 概述 大家好,今天我们来学习一下如何在STM32上控制LED灯,并且实现一个流水灯的效果。这不仅是一个基础的实践,也是嵌入式开发中非常常见的需求。 LED控制 1. LED初始化 首先,我们需要对LED灯对应…...
JAVA开源项目 桂林旅游景点导游平台 计算机毕业设计
博主说明:本文项目编号 T 079 ,文末自助获取源码 \color{red}{T079,文末自助获取源码} T079,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...
docker安装使用Elasticsearch,解决启动后无法访问9200问题
1.docker安装、启动es docker pull elasticsearch:8.13.0docker images启动容器 docker run -d -p 9200:9200 -p 9300:9300 -e ES_JAVA_OPTS"-Xms256m -Xmx256m" --name es01 8ebd258614f1-d 后台运行-p 9200:9200 -p 9300:9300 开放与主机映射端口-e ES_JAVA_OPTS…...
GM、BP、LSTM时间预测预测代码
GM clc; clear; close all;%% 数据加载和预处理 [file, path] uigetfile(*.xlsx, Select the Excel file); filename fullfile(path, file); time_series xlsread(filename);% 确保数据是一列 time_series time_series(:);% 归一化数据 min_val min(time_series); max_v…...
《操作系统 - 清华大学》4 -5:非连续内存分配:页表一反向页表
文章目录 1. 大地址空间的问题2. 页寄存器( Page Registers )方案3. 基于关联内存(associative memory )的反向页表(inverted page table)4. 基于哈希(hashed)查找的反向页表5. 小结 1. 大地址空间的问题 …...
志愿者小程序源码社区网格志愿者服务小程序php
志愿者服务小程序源码开发方案:开发语言后端php,tp框架,前端是uniapp。 一 志愿者端-小程序: 申请成为志愿者,志愿者组织端进行审核。成为志愿者后,可以报名参加志愿者活动。 志愿者地图:可以…...
Java语言编程,通过阿里云mongo数据库监控实现数据库的连接池优化
一、背景 线上程序连接mongos超时,mongo监控显示连接数已使用100%。 java程序报错信息: org.mongodb.driver.connection: Closed connection [connectionId{localValue:1480}] to 192.168.10.16:3717 because there was a socket exception raised by…...
使用ufw配置防火墙,允许特定范围IP访问
文章目录 1. 安装 UFW(如果尚未安装)2. 允许特定 IP 地址访问 22 端口3. 允许特定子网访问 22 端口4. 启用 UFW5. 检查 UFW 状态6. 重新加载 UFW(如果需要)7. 删除规则(如果需要) 在ubuntu上使用 ufw&#…...
实现 UniApp 右上角按钮“扫一扫”功能实战教学
实现 UniApp 右上角按钮“扫一扫”功能实战教学 需求 点击右上角扫一扫按钮(onNavigationBarButtonTap监听),打开扫一扫页面(uni.scanCode) 扫描后,以网页的形式打开扫描内容(web-view组件),限制只能浏览带有执行域名的网站,例如…...
【2024亚太杯亚太赛APMCM C题】数学建模竞赛|宠物行业及相关产业的发展分析与策略|建模过程+完整代码论文全解全析
第一个问题是:请基于附件 1 中的数据以及你的团队收集的额外数据,分析过去五年中国宠物行业按宠物类型的发展情况。并分析中国宠物行业发展的因素,预测未来三年中国宠物行业的发展。 第一个问题:分析中国宠物行业按宠物类型的发展…...
ubtil循环函数调用
什么是until until循环是一种控制流结构。它与while循环相反,while循环是在条件为真时执行循环体,而until循环是在条件为假时执行循环体,直到条件为真时才停止循环。 until代码示例: i0 do until [ ! $i -lt 10 ] echo $…...
使用EFK收集k8s日志
首先我们使用EFK收集Kubernetes集群中的日志,本次实验讲解的是在Kubernetes集群中启动一个Elasticsearch集群,如果企业内已经有了Elasticsearch集群,可以直接将日志输出至已有的Elasticsearch集群。 文章目录 部署elasticsearch创建Kibana创建…...
聚水潭与MySQL数据集成案例分享
聚水潭数据集成到MySQL的技术案例分享 在现代数据驱动的业务环境中,如何高效、可靠地实现不同系统之间的数据对接成为企业关注的焦点。本次案例将详细介绍如何通过轻易云数据集成平台,将聚水潭的数据无缝集成到MySQL数据库中,实现从“聚水谭…...
Python 版本的 2024详细代码
2048游戏的Python实现 概述: 2048是一款流行的单人益智游戏,玩家通过滑动数字瓷砖来合并相同的数字,目标是合成2048这个数字。本文将介绍如何使用Python和Pygame库实现2048游戏的基本功能,包括游戏逻辑、界面绘制和用户交互。 主…...
SpringCloud框架学习(第四部分:Gateway网关)
目录 十一、Gateway新一代网关 1.概述 2.Gateway三大核心 3.工作流程 4.入门配置 5.路由映射 (1)8001 外部添加网关 (2)服务间调用添加网关 (3)存在问题 6.Gateway高级特性 (1&#x…...
C++ 类和对象 (上 )
学习本身就是一件很快乐的事情 一. 面向对象和面向过程 我们在学习计算机的过程中经常会听到xxx是一门面向对象的语言 xxx是一门面向过程的语言 那么到底什么是面向对象 什么是面向过程呢? 简单介绍下 面向过程 面向过程关注的是过程 分析出求解问题的步骤&…...
HAProxy面试题及参考答案(精选80道面试题)
目录 什么是 HAProxy? HAProxy 主要有哪些功能? HAProxy 的关键特性有哪些? HAProxy 的主要功能是什么? HAProxy 的作用是什么? 解释 HAProxy 在网络架构中的作用。 HAProxy 与负载均衡器之间的关系是什么? HAProxy 是如何实现负载均衡的? 阐述 HAProxy 的四层…...
探索PyCaret:一个简化机器学习的全栈库
探索PyCaret:一个简化机器学习的全栈库 机器学习领域充满了挑战,从数据预处理、特征工程到模型训练与评估,再到模型部署。对于数据科学初学者或者时间有限的开发者,这一流程可能显得繁琐且复杂。幸运的是,PyCaret 提供…...
英语写作中“联系、关联”associate correlate 及associated的用法
似乎是同义词的associate correlate 实际上意思差别明显,associate 是人们把两者联系在一起(主观联系),而correlate 指客观联系。 例如: We always associate sports with health.(我们总是将运动和健康联…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
