当前位置: 首页 > news >正文

Django实现智能问答助手-数据库方式读取问题和答案

扩展

  1. 增加问答数据库,通过 Django Admin 添加问题和答案。
  2. 实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。
  3. 使用前端框架(如 Bootstrap)增强用户界面

1.注册模型到 Django Admin(admin.py)

在应用目录下的admin.py文件中,注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作,代码如下:

from django.contrib import admin
from. import models
# 注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作
# Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了
admin.site.register(models.QuestionAnswer)

通过以上代码,Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了。

2. 数据库迁移

完成模型定义和注册后,需要进行数据库迁移,让 Django 根据模型创建相应的数据库表结构。打开命令行,进入项目根目录(包含manage.py文件的目录),依次执行以下命令:

python manage.py makemigrations
python manage.py migrate
  • makemigrations命令会根据模型的定义生成迁移文件,它会检测模型的变化并生成相应的脚本,告诉 Django 要对数据库做哪些改变。
  • migrate命令则是将这些迁移脚本实际应用到数据库中,创建或更新对应的表结构。

3. 完善视图逻辑(可能在views.py中)

之前的视图函数可以进一步优化,例如更好地处理可能出现的错误情况等,以下是优化后的示例(在views.py中):

from django.shortcuts import render
from.models import QuestionAnswerdef home(request):if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 这里可以实现简单的匹配逻辑,优化了判断,避免空查询answer = QuestionAnswer.objects.filter(question__icontains=user_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')

在这个优化后的视图函数中:

  1. 增加了对user_question是否为空的判断,如果为空则返回相应提示,让用户输入有效的问题,增强了用户交互的友好性。
  2. 对于找不到答案的情况,返回了更友好的提示语句。

4.实现更复杂的问答逻辑,使用自然语言处理(NLP)库

安装必要的库*

首先确保已经安装了 nltk 库,如果没有安装,可以通过以下命令安装:

pip install nltk

导入必要的模块和下载相关资源(针对 nltk),views.py文件

from django.shortcuts import render
from.models import QuestionAnswer
import nltk
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords# 下载nltk所需的停用词资源(只需执行一次,可在项目启动时或首次运行相关代码时)
nltk.download('stopwords')

修改后的视图函数 home

def home(request):if request.method == 'GET':return render(request, 'qa/home.html', {'response': ""})if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 进行自然语言处理相关的预处理操作stemmer = PorterStemmer()stop_words = set(stopwords.words('english'))# 对用户问题进行分词、词干提取、停用词去除等预处理words = nltk.word_tokenize(user_question)words = [stemmer.stem(word) for word in words if word not in stop_words]# 重新组合处理后的问题processed_question = " ".join(words)# 这里可以实现更复杂的匹配逻辑,基于预处理后的问题进行查找answer = QuestionAnswer.objects.filter(question__icontains=processed_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')

在上述修改后的代码中:

  • 首先导入了 nltk
    相关的模块用于进行自然语言处理操作,包括词干提取(PorterStemmer)和获取停用词(stopwords)。
  • 在处理 POST 请求且用户输入了有效问题后,对用户问题进行了一系列自然语言处理的预处理操作: 先创建了词干提取器
    PorterStemmer 和获取了英语的停用词集合。
  • 对用户问题进行分词,然后对每个分词进行词干提取并去除停用词,最后重新组合成处理后的问题。
  • 基于处理后的问题在 QuestionAnswer 模型中进行答案的查找匹配,根据是否找到答案来设置相应的 response值并返回给模板进行展示。

5.在数据库中预先输入问题和答案

在这里插入图片描述
这样就可以在页面上通过数据库的方式读取问题和答案

相关文章:

Django实现智能问答助手-数据库方式读取问题和答案

扩展 增加问答数据库,通过 Django Admin 添加问题和答案。实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。使用前端框架(如 Bootstrap)增强用户界面 1.注册模型到 Django Admin(admin.py…...

stm32利用LED配置基础寄存器+体验滴答定时器+hal库环境配置

P1 LED控制与流水灯效果实现 概述 大家好,今天我们来学习一下如何在STM32上控制LED灯,并且实现一个流水灯的效果。这不仅是一个基础的实践,也是嵌入式开发中非常常见的需求。 LED控制 1. LED初始化 首先,我们需要对LED灯对应…...

JAVA开源项目 桂林旅游景点导游平台 计算机毕业设计

博主说明:本文项目编号 T 079 ,文末自助获取源码 \color{red}{T079,文末自助获取源码} T079,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

docker安装使用Elasticsearch,解决启动后无法访问9200问题

1.docker安装、启动es docker pull elasticsearch:8.13.0docker images启动容器 docker run -d -p 9200:9200 -p 9300:9300 -e ES_JAVA_OPTS"-Xms256m -Xmx256m" --name es01 8ebd258614f1-d 后台运行-p 9200:9200 -p 9300:9300 开放与主机映射端口-e ES_JAVA_OPTS…...

GM、BP、LSTM时间预测预测代码

GM clc; clear; close all;%% 数据加载和预处理 [file, path] uigetfile(*.xlsx, Select the Excel file); filename fullfile(path, file); time_series xlsread(filename);% 确保数据是一列 time_series time_series(:);% 归一化数据 min_val min(time_series); max_v…...

《操作系统 - 清华大学》4 -5:非连续内存分配:页表一反向页表

文章目录 1. 大地址空间的问题2. 页寄存器( Page Registers )方案3. 基于关联内存(associative memory )的反向页表(inverted page table)4. 基于哈希(hashed)查找的反向页表5. 小结 1. 大地址空间的问题 …...

志愿者小程序源码社区网格志愿者服务小程序php

志愿者服务小程序源码开发方案:开发语言后端php,tp框架,前端是uniapp。 一 志愿者端-小程序: 申请成为志愿者,志愿者组织端进行审核。成为志愿者后,可以报名参加志愿者活动。 志愿者地图:可以…...

Java语言编程,通过阿里云mongo数据库监控实现数据库的连接池优化

一、背景 线上程序连接mongos超时,mongo监控显示连接数已使用100%。 java程序报错信息: org.mongodb.driver.connection: Closed connection [connectionId{localValue:1480}] to 192.168.10.16:3717 because there was a socket exception raised by…...

使用ufw配置防火墙,允许特定范围IP访问

文章目录 1. 安装 UFW(如果尚未安装)2. 允许特定 IP 地址访问 22 端口3. 允许特定子网访问 22 端口4. 启用 UFW5. 检查 UFW 状态6. 重新加载 UFW(如果需要)7. 删除规则(如果需要) 在ubuntu上使用 ufw&#…...

实现 UniApp 右上角按钮“扫一扫”功能实战教学

实现 UniApp 右上角按钮“扫一扫”功能实战教学 需求 点击右上角扫一扫按钮(onNavigationBarButtonTap监听),打开扫一扫页面(uni.scanCode) 扫描后,以网页的形式打开扫描内容(web-view组件),限制只能浏览带有执行域名的网站,例如…...

【2024亚太杯亚太赛APMCM C题】数学建模竞赛|宠物行业及相关产业的发展分析与策略|建模过程+完整代码论文全解全析

第一个问题是:请基于附件 1 中的数据以及你的团队收集的额外数据,分析过去五年中国宠物行业按宠物类型的发展情况。并分析中国宠物行业发展的因素,预测未来三年中国宠物行业的发展。 第一个问题:分析中国宠物行业按宠物类型的发展…...

ubtil循环函数调用

什么是until until循环是一种控制流结构。它与while循环相反,while循环是在条件为真时执行循环体,而until循环是在条件为假时执行循环体,直到条件为真时才停止循环。 until代码示例: i0 do until [ ! $i -lt 10 ] echo $…...

使用EFK收集k8s日志

首先我们使用EFK收集Kubernetes集群中的日志,本次实验讲解的是在Kubernetes集群中启动一个Elasticsearch集群,如果企业内已经有了Elasticsearch集群,可以直接将日志输出至已有的Elasticsearch集群。 文章目录 部署elasticsearch创建Kibana创建…...

聚水潭与MySQL数据集成案例分享

聚水潭数据集成到MySQL的技术案例分享 在现代数据驱动的业务环境中,如何高效、可靠地实现不同系统之间的数据对接成为企业关注的焦点。本次案例将详细介绍如何通过轻易云数据集成平台,将聚水潭的数据无缝集成到MySQL数据库中,实现从“聚水谭…...

Python 版本的 2024详细代码

2048游戏的Python实现 概述: 2048是一款流行的单人益智游戏,玩家通过滑动数字瓷砖来合并相同的数字,目标是合成2048这个数字。本文将介绍如何使用Python和Pygame库实现2048游戏的基本功能,包括游戏逻辑、界面绘制和用户交互。 主…...

SpringCloud框架学习(第四部分:Gateway网关)

目录 十一、Gateway新一代网关 1.概述 2.Gateway三大核心 3.工作流程 4.入门配置 5.路由映射 (1)8001 外部添加网关 (2)服务间调用添加网关 (3)存在问题 6.Gateway高级特性 (1&#x…...

C++ 类和对象 (上 )

学习本身就是一件很快乐的事情 一. 面向对象和面向过程 我们在学习计算机的过程中经常会听到xxx是一门面向对象的语言 xxx是一门面向过程的语言 那么到底什么是面向对象 什么是面向过程呢? 简单介绍下 面向过程 面向过程关注的是过程 分析出求解问题的步骤&…...

HAProxy面试题及参考答案(精选80道面试题)

目录 什么是 HAProxy? HAProxy 主要有哪些功能? HAProxy 的关键特性有哪些? HAProxy 的主要功能是什么? HAProxy 的作用是什么? 解释 HAProxy 在网络架构中的作用。 HAProxy 与负载均衡器之间的关系是什么? HAProxy 是如何实现负载均衡的? 阐述 HAProxy 的四层…...

探索PyCaret:一个简化机器学习的全栈库

探索PyCaret:一个简化机器学习的全栈库 机器学习领域充满了挑战,从数据预处理、特征工程到模型训练与评估,再到模型部署。对于数据科学初学者或者时间有限的开发者,这一流程可能显得繁琐且复杂。幸运的是,PyCaret 提供…...

英语写作中“联系、关联”associate correlate 及associated的用法

似乎是同义词的associate correlate 实际上意思差别明显,associate 是人们把两者联系在一起(主观联系),而correlate 指客观联系。 例如: We always associate sports with health.(我们总是将运动和健康联…...

深度学习之目标检测的技巧汇总

1 Data Augmentation 介绍一篇发表在Big Data上的数据增强相关的文献综述。 Introduction 数据增强与过拟合 验证是否过拟合的方法:画出loss曲线,如果训练集loss持续减小但是验证集loss增大,就说明是过拟合了。 数据增强目的 通过数据增强…...

【Flask+Gunicorn+Nginx】部署目标检测模型API完整解决方案

【Ubuntu 22.04FlaskGunicornNginx】部署目标检测模型API完整解决方案 文章目录 1. 搭建深度学习环境1.1 下载Anaconda1.2 打包环境1.3 创建虚拟环境1.4 报错 2. 安装flask3. 安装gunicorn4. 安装Nginx4.1 安装前置依赖4.2 安装nginx4.3 常用命令 5. NginxGunicornFlask5.1 ng…...

Spark核心组件解析:Executor、RDD与缓存优化

Spark核心组件解析:Executor、RDD与缓存优化 Spark Executor Executor 是 Spark 中用于执行任务(task)的执行单元,运行在 worker 上,但并不等同于 worker。实际上,Executor 是一组计算资源(如…...

“AI玩手机”原理揭秘:大模型驱动的移动端GUI智能体

作者|郭源 前言 在后LLM时代,随着大语言模型和多模态大模型技术的日益成熟,AI技术的实际应用及其社会价值愈发受到重视。AI智能体(AI Agent)技术通过集成行为规划、记忆存储、工具调用等机制,为大模型装上…...

离散数学【关系】中的一些特殊关系

在数学中,关系是描述集合之间元素间关系的方式。以下是对一些常见关系的详细分析及举例: 1. 空关系 (Empty Relation) 空关系是指在一个集合中,没有任何元素之间存在关系。即对于集合中的所有元素,空关系都不包含任何有序对。 …...

docker 配置代理

创建 Docker 服务配置文件&#xff1a; sudo mkdir -p /etc/systemd/system/docker.service.d sudo vim /etc/systemd/system/docker.service.d/http-proxy.conf添加代理配置&#xff1a; [Service] Environment"HTTP_PROXYhttp://<proxy-address>:<port>&q…...

Dockerfile详解:构建简单高效的容器镜像

引言 在容器化技术日益普及的今天&#xff0c;Dockerfile 成为了构建 Docker 镜像的核心工具。通过编写 Dockerfile&#xff0c;开发者可以将应用程序及其依赖打包成一个可移植、可复用的镜像&#xff0c;从而简化部署和运维工作。本文将详细介绍 Dockerfile 的基本概念、常用指…...

RHCD-----shell

要求&#xff1a; 通过shell脚本分析部署nginx网络服务 1.接收用户部署的服务名称 2.判断服务是否安装 ​ 已安装&#xff1b;自定义网站配置路径为/www&#xff1b;并创建共享目录和网页文件&#xff1b;重启服务 ​ 没有安装&#xff1b;安装对应的软件包 3.测试 判断服务是…...

<硬件有关> 内存攒机认知入门,内存的选择 配置 laptop PC 服务器

原因 这不是黑五吗&#xff0c;给我儿子买了台最便宜 ($300) DELL laptop&#xff0c;CPU 是 i5-1235U&#xff0c;但只有 8GB 内存。升级内存吧。 如何选择内存&#xff1a;家用范围 这里不考虑品牌&#xff0c;在我眼里&#xff0c;区别就是价格&#xff0c;还有所谓的物理…...

基于springboot的来访管理系统的设计与实现

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于springboot的来访管理系统的设计与实…...