当前位置: 首页 > news >正文

JavaEE-线程安全专题

文章目录

  • 线程安全概述
    • 线程安全引入
    • 线程不安全原因概述
  • 线程是随机调度的

线程安全概述

线程安全引入

线程安全问题是整个多线程专题的最核心也是最重要的章节, 如果不理解线程的安全, 是无法写出正确的多线程的代码的, 我们之前所写的代码都是在单一的线程环境之下写出的 “玩具式” 的代码, 不存在多线程的复杂关系, 下面我们给出一段代码来引出线程安全的话题…


public class ThreadTest {// 定义一个计数器private static int count = 0;// 定义一个循环的次数private static final int MAX_TIME = 50000;public static void main(String[] args) throws InterruptedException {// 重置计数器countcount = 0;// 创建线程t1Thread t1 = new Thread(() -> {for(int i = 0; i < MAX_TIME; i++){count++;}});// 创建线程t2Thread t2 = new Thread(() -> {for(int i = 0; i < MAX_TIME; i++){count++;}});// 开启线程t1, t2t1.start();t2.start();// main线程等待t1, t2 的执行t1.join();t2.join();System.out.println("运行结果" + count);}
}

我们上述代码想要完成的逻辑是

  • 想通过两个线程把count的值置为10_0000

但是实际上, 运行结果是

在这里插入图片描述
在这里插入图片描述

可以发现, 运行结果跟我们的预期的结果不一致, 这其实就是线程安全问题


线程安全问题:
在多线程环境下, 如果实际运行的结果与预期不一致, 就说明存在线程安全问题, 或者说线程不安全


线程不安全原因概述

  • 线程是并发执行的, 在cpu上的调度的随机的…[根本原因]
  • 多个线程同时修改同一个变量
  • 修改操作不是原子性的
  • 内存可见性问题
  • 指令重排序问题

第一条的关于cpu的调度问题, 我们是没有办法干预的, 因为这是操作系统层面的事情, cpu是随机调度的, 而不是串行执行, 如果是串行执行则不会出现这种线程安全相关的问题
所以我们只能从后四个进行关于线程安全的处理

线程是随机调度的

这是线程安全问题的最根本的原因, 因为我们的程序在cpu上的执行是随机调度的, 所以天然的程序执行就不是连续的, 想要解决这种问题的方法就是, 重写一个操作系统(对线程的调度模式进行重新设计, 这显然是不合理的…)

相关文章:

JavaEE-线程安全专题

文章目录 线程安全概述线程安全引入线程不安全原因概述 线程是随机调度的 线程安全概述 线程安全引入 线程安全问题是整个多线程专题的最核心也是最重要的章节, 如果不理解线程的安全, 是无法写出正确的多线程的代码的, 我们之前所写的代码都是在单一的线程环境之下写出的 “…...

Android 设备使用 Wireshark 工具进行网络抓包

背景 电脑和手机连接同一网络&#xff0c;想使用wireshark抓包工具抓取Android手机网络日志&#xff0c;有以下两种连接方法&#xff1a; Wi-Fi 网络抓包。USB 网络共享抓包。需要USB 数据线将手机连接到电脑&#xff0c;并在开发者模式中启用 USB 网络共享。 查看设备连接信…...

物联网无线局域网WiFi开发(一):WiFi智能家居解决方案

一、WiFi智能家居硬件设计 &#xff08;一&#xff09;WiFi智能家居硬件方案 &#xff08;二&#xff09;硬件选型方案 二、WiFi开发环境搭建 &#xff08;一&#xff09;开发环境搭建 虚拟机lubuntu VirtualBox下载地址&#xff1a;https://www.virtualbox.org/wiki/Downl…...

GMAN解读(论文+代码)

一、注意力机制 注意力机制与传统的卷积神经网络不同的是&#xff0c;前者擅长捕获全局依赖和长程关系&#xff0c;权重会动态调整。而后者对于所有特征都使用同一个卷积核。关于更多注意力机制内容&#xff0c;详见&#xff1a; 注意力机制、自注意力机制、多头注意力机制、通…...

速盾:ddos防御手段哪种比较好?高防cdn怎么样?

DDoS&#xff08;分布式拒绝服务&#xff09;攻击是一种威胁网络安全的常见攻击手段。为了保护网站和服务器免受DDoS攻击的影响&#xff0c;许多安全专家和公司开发了各种防御手段。在这篇文章中&#xff0c;我们将重点讨论一种常见的DDoS防御手段——高防CDN&#xff08;内容分…...

Spring:AOP切入点表达式

对于AOP中切入点表达式&#xff0c;我们总共会学习三个内容&#xff0c;分别是语法格式、通配符和书写技巧。 语法格式 首先我们先要明确两个概念: 切入点:要进行增强的方法切入点表达式:要进行增强的方法的描述方式 对于切入点的描述&#xff0c;我们其实是有两中方式的&a…...

《文件操作》

一 . 文本文件和二进制文件 根据数据的组织形式&#xff0c;数据文件被分为了二进制文件和文本文件 数据在内存中是以二进制的形式存储&#xff0c;如果不加转换的输出到外存的文件中&#xff0c;就是二进制文件。 如果要求在外存上以ASCII 码的形式存储&#xff0c;则需要再存…...

python特殊字符序列

字符 描述 \A 只匹配字符串的开始 \b 匹配一个单词边界 \B 匹配一个单词的非边界 \d 匹配任意十进制数字字符&#xff0c;等价于r&#xff3b;0-9] \D 匹配任意非十进制数字字符&#xff0c;等价于r[^0-9]’ \s 匹配任意空格字符&#xff08;空格符、tab制表符、换…...

卷积神经网络(CNN)中的批量归一化层(Batch Normalization Layer)

批量归一化层&#xff08;BatchNorm层&#xff09;&#xff0c;或简称为批量归一化&#xff08;Batch Normalization&#xff09;&#xff0c;是深度学习中常用的一种技术&#xff0c;旨在加速神经网络的训练并提高收敛速度。 一、基本思想 为了让数据在训练过程中保持同一分布…...

LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models 论文解读

目录 一、概述 二、相关工作 1、LLMs到多模态 2、3D对象生成 3、自回归的Mesh生成 三、LLaMA-Mesh 1、3D表示 2、预训练模型 3、有监督的微调数据集 4、数据集演示 四、实验 1、生成的多样性 2、不同模型text-to-Mesh的比较 3、通用语境的评估 一、概述 该论文首…...

【ESP32CAM+Android+C#上位机】ESP32-CAM在STA或AP模式下基于UDP与手机APP或C#上位机进行视频流/图像传输

前言: 本项目实现ESP32-CAM在STA或AP模式下基于UDP与手机APP或C#上位机进行视频流/图像传输。本项目包含有ESP32源码(arduino)、Android手机APP源码以及C#上位机源码,本文对其工程项目的配置使用进行讲解。实战开发,亲测无误。 AP模式,就是ESP32发出一个WIFI/热点提供给电…...

ESP-KeyBoard:基于 ESP32-S3 的三模客制化机械键盘

概述 在这个充满挑战与机遇的数字化时代&#xff0c;键盘已经成为我们日常学习、工作、娱乐生活必不可少的设备。而在众多键盘中&#xff0c;机械键盘&#xff0c;以其独特的触感、清脆的敲击音和经久耐用的特性&#xff0c;已经成为众多游戏玩家和电子工程师的首选。本文将为…...

28.UE5游戏框架,事件分发器,蓝图接口

3-3 虚幻游戏框架拆解&#xff0c;游戏规则基础_哔哩哔哩_bilibili 目录 1.游戏架构 2.事件分发器 2.1UI控件中的事件分发器 2.2Actor蓝图中的事件分发器 2.2.1动态决定Actor的分发事件 2.2.2父类中定义事件分发器&#xff0c;子类实现事件分发器 2.3组件蓝图中实现事件…...

Puppeteer 和 Cheerio 在 Node.js 中的应用

Puppeteer 和 Cheerio 在 Node.js 中的应用 引言 在现代 Web 开发中&#xff0c;自动化测试、数据抓取和页面分析是常见的需求。Node.js 提供了丰富的工具和库来满足这些需求。本文将介绍两个在 Node.js 中常用的库&#xff1a;Puppeteer 和 Cheerio&#xff0c;它们分别用于…...

Unity2D 关于N方向俯视角 中 角色移动朝向的问题

通常对俯视角2d游戏的角色移动我们使用简单2d混合树的方式,但是其不移动时的朝向该如何定义&#xff1f; 十分简单&#xff1a;移动和不移动之间形成逻辑自锁 详细说明思路就是再创建一个简单2d混合树 定义其N方向的idle 并用lastDirc二维向量保存玩家输入&#xff0c;当玩家输…...

pytorch 和tensorflow loss.item()` 只能用于只有一个元素的张量. 防止显存爆炸

loss.item() 是 PyTorch 中的一个方法&#xff0c;它用于从一个只包含单个元素的张量&#xff08;tensor&#xff09;中提取出该元素的值&#xff0c;并将其转换为一个 Python 标量&#xff08;即 int 或 float 类型&#xff09;。这个方法在训练神经网络时经常用到&#xff0c…...

链表刷题|判断回文结构

题目来自于牛客网&#xff0c;本文章仅记录学习过程的做题理解&#xff0c;便于梳理思路和复习 我做题喜欢先把时间复杂度和空间复杂度放一边&#xff0c;先得有大概的解决方案&#xff0c;最后如果时间或者空间超了再去优化即可。 思路一&#xff1a;要判断是否为回文结构则…...

海盗王集成网关和商城服务端功能golang版

之前用golang把海盗王的商城服务端和网关服务端都重写了一次。 后来在同时开启网关和商城服务时&#xff0c;发现窗口数量有点多&#xff0c;有时要找到商城窗口比较麻烦。 既然2个都是用golang govcl写的&#xff0c;是不是可以集成到一起&#xff0c;方便使用呢&#xff1f;…...

SCI 中科院分区中位于4区,JCR分区位于Q2 是什么水平?

环境&#xff1a; ACM Transactions on Interactive Intelligent Systems 《Acm Transactions On Interactive Intelligent Systems》(《交互式智能系统上的 Acm 事务》)是一本由ASSOC COMPUTING MACHINERY (ACM)出版的Computer Interaction-Computer Science-Human学术刊物&…...

微知-Mellanox网卡的另外一种升级方式mlxup?(mlxup -d xxx -i xxx.bin)

背景 一般升级Mellanox网卡使用flint&#xff0c;还有另外一种叫做mlxup。 NVIDIA 提供了两种固件工具来更新和查询适配器固件&#xff1a; MLXUP - 固件更新和查询实用程序。该实用程序允许扫描服务器计算机以查找可用的 NVIDIA 适配器&#xff0c;并指示每个适配器是否需要…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...