(二)手势识别——动作模型训练【代码+数据集+python环境(免安装)+GUI系统】
(二)手势识别——动作模型训练【代码+数据集+python环境(免安装)+GUI系统】

背景意义
随着互联网的普及和机器学习技术的进一步发展,手势识别技术开始使用深度学习等方法进行手势识别,如Convolutional Neural Networks(CNN)等,并开始应用于网上购物、游戏等场景。
随着人工智能技术的快速发展,手势识别技术得到了广泛应用,逐渐成为人机交互的重要组成部分,应用范围也逐渐扩大,如智能家居、无人驾驶等。
提高人机交互的自然性和便捷性:通过手势识别技术,用户可以通过手势来操作计算机或其他设备,这种方式比传统的鼠标、键盘或触摸屏输入更加自然和便捷。例如,在游戏中,玩家可以通过手势来控制游戏角色的运动;在导航中,用户可以通过手势来操作导航系统,获取导航信息;在家庭自动化中,用户可以通过手势来控制家庭设备。
手势识别技术能够帮助我们与失语的特殊人群实现有效的沟通。通过手势识别技术,我们可以更好地理解他们的需求和想法,从而提供更好的支持和帮助。例如,在家庭中,如果有一位家庭成员因为疾病或其他原因无法说话,我们可以通过手势识别技术了解他们的需求,提供必要的帮助。这不仅能够增进家庭成员之间的理解和关爱,还能提高他们的生活质量。
在一些特殊的职业环境中,比如工厂、实验室等,工作人员可能因为佩戴防护装备而无法说话,这时手势识别技术可以帮助他们与同事进行沟通,确保工作的顺利进行。同时,手势识别技术还可以应用于教育领域,帮助教师更好地了解学生的需求,提高教学质量。
在虚拟现实领域,手势识别技术可以实现用户在虚拟环境中的自由移动和操作,增强虚拟现实的沉浸感和真实感。在智能监控方面,手势识别系统可以用于识别特定的手势动作,例如手势警报系统可以通过识别求救手势来及时报警,提高安全性和应急响应能力。
手势识别技术作为一种重要的人机交互方式,具有广泛的应用前景和深远的社会意义。随着人工智能和机器学习技术的不断发展,手势识别技术将在未来继续发挥更大的作用。
模型训练
收集足够数量的图片数据,在动作识别(一)中已给出采集数据方法。
确保数据集具有多样性,覆盖各种场景、光照条件和目标姿态。根据数据集的特点和训练需求,创建相应的配置文件(如yaml文件)。在配置文件中设置模型架构、训练参数(如学习率、批次大小、训练轮次等)、数据增强方法等。为了加速训练过程并提高模型性能,可以选择下载预训练的YOLO模型权重。预训练权重通常是在大型数据集(如COCO、VOC等)上训练得到的,具有良好的泛化能力。使用训练脚本或工具(如PyTorch、TensorFlow等)加载数据集、配置文件和预训练权重。设置训练参数,如GPU数量、训练轮次等,并开始训练过程。在训练过程中,密切关注训练损失和验证损失的变化趋势,以及模型在验证集上的表现(如mAP)。根据训练结果和验证集性能,对模型进行超参数调优(如学习率、批次大小等)。使用数据增强技术(如Mosaic、MixUp等)提高模型的泛化能力。
在测试集上评估模型的性能,确保模型具有良好的准确性和鲁棒性。
代码示例与操作步骤
代码示例如下:

设计对应的GUI界面如下:

选择加载模型类型,输入数据集路径,类型名称,图像大小,训练次数等参数,然后点击【开始训练】,等待训练完成,即可获得训练好的模型。
安装使用说明
确保代码所在的路径不能出现中文!!!!!!!
确保代码所在的路径不能出现中文!!!!!!!
确保代码所在的路径不能出现中文!!!!!!!
为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。

运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境。

联系方式
我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哈~~~
相关文章:
(二)手势识别——动作模型训练【代码+数据集+python环境(免安装)+GUI系统】
(二)手势识别——动作模型训练【代码数据集python环境(免安装)GUI系统】 背景意义 随着互联网的普及和机器学习技术的进一步发展,手势识别技术开始使用深度学习等方法进行手势识别,如Convolutional Neural…...
window系统下使用open-webui+ollama部署大模型
前面一篇博文中讲述了window下用ollama+AnythingLLM部署本地知识库,但是个人感觉anythingllm不是很好用,还不如直接用cmd窗口,而且仅能本机使用,如果想部署到服务器上面供其他人访问,完全不可行,但是使用open-webui+ollama或者独立的open-webui救可以实现。 使用open-web…...
一加ACE 3 Pro手机无法连接电脑传输文件问题
先说结论:OnePlus手机无法连接电脑传输数据的原因,大概率是一加数据线的问题。尝试其他手机品牌的数据线(比如华为),再次尝试。 连接电脑方法: 1 打开开发者模式(非必要操作) 进入…...
因果机器学习EconML | 客户细分案例——基于机器学习的异质性处理效果估计
机器学习的最大承诺之一是在众多应用领域中实现决策自动化。在大多数数据驱动的个性化决策场景中出现的一个核心问题是对异质性处理效果的估计:作为处理样本的一组可观察特征的函数,干预对感兴趣结果的影响是什么?例如,这个问题出…...
找到最大“葫芦”组合
文章目录 问题描述解题思路分析1. 数据预处理2. 特殊情况处理3. 普通情况计算4. 结果输出 Java代码实现复杂度分析与优化 在经典德州扑克中,“葫芦”是一种较强的牌型。它由五张牌组成,其中三张牌面值相同,另外两张牌面值也相同。本文将探讨一…...
shell(9)完结
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&a…...
【计算机网络】多路转接之select
系统提供select()来实现多路转接 IO 等 拷贝 -> select()只负责等待,可以一次等待多个fd select()本身没有数据拷贝的能力,拷贝要read()/write()来完成 一、select的使用 int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exc…...
数据库-基础理论
文章目录 前言一、ORM框架二、ACID原则三、事务Transaction四、N1问题五、Normalization三范式六、FMEA方法论(Failure Mode and Effects Analysis)七、Profiling和PerformanceSchema查询分析 前言 基础理论 ORM框架、ACID原则、事务Transaction、N1问…...
Linux——1_系统的延迟任务及定时任务
系统的延迟任务及定时任务 在系统中我们的维护工作大多数时在服务器行对闲置时进行 我们需要用延迟任务来解决自动进行的一次性的维护 延迟任务时一次性的,不会重复执行 当延迟任务产生输出后,这些输出会以邮件的形式发送给延迟任务发起者 在RHEL9中…...
C++ 矩阵旋转
【问题描述】 编写一个程序,读入一个矩阵,输出该矩阵以第一行第一列数字为中心,顺时针旋转90度后的新矩阵,例如: 输入的矩阵为: 1 2 3 4 5 6 顺时针旋转90度后输出的矩阵为: 4 1 5 2 6 3 【输入…...
Docker学习笔记整理
这周不知道写点啥内容做个分享,但还是秉持学会分享的精神,粗略放一些Docker相关的问题和解答吧,后面有机会再补补再深挖深挖o(>﹏<)o 1. 容器VS虚拟机 虚拟机是一种带环境安装的解决方案(资源完全隔离),有以下缺…...
计算机组成原理期末试题三(含答案)
本科生期末试卷 三 一.选择题(每小题1分,共10分) 1.冯诺依曼机工作的基本方式的特点是______。 A 多指令流单数据流 B 按地址访问并顺序执行指令 C 堆栈操作 D 存贮器按内容选择地址 2.在机器数______中&a…...
django+boostrap实现注册
一、django介绍 Django 是一个高级的 Python 网络框架,可以快速开发安全和可维护的网站。由经验丰富的开发者构建,Django 负责处理网站开发中麻烦的部分,因此你可以专注于编写应用程序,而无需重新开发。 它是免费和开源的&#x…...
C++初阶——类和对象(下)
目录 1、再探构造函数——初始化列表 2、类型转换 3、static成员 4、友元 5、内部类 6、匿名对象 7、对象拷贝时编译器的优化(了解) 1、再探构造函数——初始化列表 1. 构造函数初始化除了使用函数体内赋值,还有一种方式——初始化列表, 初始化列…...
趋势洞察|AI 能否带动裸金属 K8s 强势崛起?
随着容器技术的不断成熟,不少企业在开展私有化容器平台建设时,首要考虑的问题就是容器的部署环境——是采用虚拟机还是物理机运行容器?在往期“虚拟化 vs. 裸金属*”系列文章中,我们分别对比了容器部署在虚拟化平台和物理机上的架…...
idea初始化设置
下载idea: https://www.jetbrains.com/idea/ 安装idea 安装插件: Rainbow BracketsLombokMybatisXSonarLintMaven HelperCodeGeeX(国内AI插件可用) 设置idea注释模板: 设置代码注释模板: https://blo…...
LINUX系统编程之——环境变量
目录 环境变量 1、基本概念 2、查看环境变量的方法 三、查看PATH环境变量的內容 1)不带路径也能运行的自己的程序 a、将自己的程序直接添加到PATH指定的路径下 b、将程序所在的路径添加到PATH环境中 四、环境变量与本地变量 1、本地变量创建 2、环境变量创…...
健康老龄化:适合老年人的播客
什么是播客 什么是播客?好问题。对于那些还不熟悉这个术语的人来说,播客有点像在线广播或电视节目。这是一个可下载、可流式传输的程序,定期发布剧集,时长从几分钟到一个多小时不等。您可以在计算机、智能手机或平板电脑上…...
家庭智慧工程师:如何通过科技提升家居生活质量
在今天的数字化时代,家居生活已经不再只是简单的“住”的地方。随着物联网(IoT)、人工智能(AI)以及自动化技术的快速发展,越来越多的家庭开始拥抱智慧家居技术,将他们的家变得更加智能化、便捷和…...
Milvus概念
非结构化数据、嵌入和 Milvus 非结构化数据(如文本、图像、音频)格式多样,蕴含丰富的语义信息,使其分析变得复杂。为了管理这种复杂性,嵌入技术被用来将非结构化数据转换为数值向量,这些向量能够捕捉数据的…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...
