当前位置: 首页 > news >正文

Spring AI 框架使用的核心概念

一、模型(Model)

AI 模型是旨在处理和生成信息的算法,通常模仿人类的认知功能。通过从大型数据集中学习模式和见解,这些模型可以做出预测、文本、图像或其他输出,从而增强各个行业的各种应用。

AI 模型有很多种,每种都适用于特定的用例。虽然 ChatGPT 及其生成 AI 功能通过文本输入和输出吸引了用户,但许多模型和公司都提供不同的输入和输出。在 ChatGPT 之前,许多人都对文本到图像的生成模型着迷,例如 Midjourney 和 Stable Diffusion。

spring-ai-concepts-model-types

Spring AI 目前支持以语言、图像和音频形式处理输入和输出的模型。上表中的最后一行接受文本作为输入并输出数字,通常称为嵌入文本(Embedding Text),用来表示 AI 模型中使用的内部数据结构。Sprig AI 提供了对 Embedding 的支持以支持开发更高级的应用场景。

GPT 等模型的独特之处在于其预训练特性,正如 GPT 中的“P”所示——Chat Generative Pre-trained Transformer。这种预训练功能将 AI 转变为通用的开发工具,开发者使用这种工具不再需要广泛的机器学习或模型训练背景。

二、提示(Prompt)

Prompt作为语言基础输入的基础,指导AI模型生成特定的输出。对于熟悉ChatGPT的人来说,Prompt似乎只是输入到对话框中的文本,然后发送到API。然而,它的内涵远不止于此。在许多AI模型中,Prompt的文本不仅仅是一个简单的字符串。

ChatGPT的API包含多个文本输入,每个文本输入都有其角色。例如,系统角色用于告知模型如何行为并设定交互的背景。还有用户角色,通常是来自用户的输入。

撰写有效的Prompt既是一门艺术,也是一门科学。ChatGPT旨在模拟人类对话,这与使用SQL“提问”有很大的区别。与AI模型的交流就像与另外一个人对话一样。

这种互动风格的重要性使得“Prompt工程”这一学科应运而生。现在有越来越多的技术被提出,以提高Prompt的有效性。投入时间去精心设计Prompt可以显著改善生成的输出。

分享Prompt已成为一种共同的实践,且正在进行积极的学术研究。例如,最近的一篇研究论文发现,最有效的Prompt之一可以以“深呼吸一下,分步进行此任务”开头。这表明语言的重要性之高。我们尚未完全了解如何充分利用这一技术的前几代版本,例如ChatGPT 3.5,更不用说正在开发的新版本了。

提示词模板(Prompt Template)

创建有效的Prompt涉及建立请求的上下文,并用用户输入的特定值替换请求的部分内容。这个过程使用传统的基于文本的模板引擎来进行Prompt的创建和管理。Spring AI采用开源库StringTemplate来实现这一目的。

例如,考虑以下简单的Prompt模板:

Tell me a {adjective} joke about {content}.

在Spring AI中,Prompt模板可以类比于Spring MVC架构中的“视图”。一个模型对象,通常是java.util.Map,提供给Template,以填充模板中的占位符。渲染后的字符串成为传递给AI模型的Prompt的内容。

传递给模型的Prompt在具体数据格式上有相当大的变化。从最初的简单字符串开始,Prompt逐渐演变为包含多条消息的格式,其中每条消息中的每个字符串代表模型的不同角色。

三、嵌入(Embedding)

嵌入(Embedding)是文本、图像或视频的数值表示,能够捕捉输入之间的关系,Embedding通过将文本、图像和视频转换为称为向量(Vector)的浮点数数组来工作。这些向量旨在捕捉文本、图像和视频的含义,Embedding数组的长度称为向量的维度。

通过计算两个文本片段的向量表示之间的数值距离,应用程序可以确定用于生成嵌入向量的对象之间的相似性。

spring-ai-embeddings

作为一名探索人工智能的Java开发者,理解这些向量表示背后的复杂数学理论或具体实现并不是必需的。对它们在人工智能系统中的作用和功能有基本的了解就足够了,尤其是在将人工智能功能集成到您的应用程序中时。

Embedding在实际应用中,特别是在检索增强生成(RAG)模式中,具有重要意义。它们使数据能够在语义空间中表示为点,这类似于欧几里得几何的二维空间,但在更高的维度中。这意味着,就像欧几里得几何中平面上的点可以根据其坐标的远近关系而接近或远离一样,在语义空间中,点的接近程度反映了意义的相似性。关于相似主题的句子在这个多维空间中的位置较近,就像图表上彼此靠近的点。这种接近性有助于文本分类、语义搜索,甚至产品推荐等任务,因为它允许人工智能根据这些点在扩展的语义空间中的“位置”来辨别和分组相关概念。

您可以将这个语义空间视为一个向量。

四、Token

token是 AI 模型工作原理的基石。输入时,模型将单词转换为token。输出时,它们将token转换回单词。

在英语中,一个token大约对应一个单词的 75%。作为参考,莎士比亚的全集总共约 90 万个单词,翻译过来大约有 120 万个token。

spring-ai-concepts-tokens

也许更重要的是 “token = 金钱”。在托管 AI 模型的背景下,您的费用由使用的token数量决定。输入和输出都会影响总token数量。

此外,模型还受到 token 限制,这会限制单个 API 调用中处理的文本量。此阈值通常称为“上下文窗口”。模型不会处理超出此限制的任何文本。

例如,ChatGPT3 的token限制为 4K,而 GPT4 则提供不同的选项,例如 8K、16K 和 32K。Anthropic 的 Claude AI 模型的token限制为 100K,而 Meta 的最新研究则产生了 1M token限制模型。

要使用 GPT4 总结莎士比亚全集,您需要制定软件工程策略来切分数据并在模型的上下文窗口限制内呈现数据。Spring AI 项目可以帮助您完成此任务。

五、结构化输出(Structured Output)

即使您要求回复为 JSON ,AI 模型的输出通常也会以 java.lang.String 的形式出现。它可能是正确的 JSON,但它可能并不是你想要的 JSON 数据结构,它只是一个字符串。此外,在提示词 Prompt 中要求 “返回JSON” 并非 100% 准确。

这种复杂性导致了一个专门领域的出现,涉及创建 Prompt 以产生预期的输出,然后将生成的简单字符串转换为可用于应用程序集成的数据结构。

结构化输出转换器架构


结构化输出转换采用精心设计的提示,通常需要与模型进行多次交互才能实现所需的格式。

六、将您的数据和 API 引入 AI 模型

如何让人工智能模型与不在训练集中的数据一同工作?

请注意,GPT 3.5/4.0 数据集仅支持截止到 2021 年 9 月之前的数据。因此,该模型表示它不知道该日期之后的知识,因此它无法很好的应对需要用最新知识才能回答的问题。一个有趣的小知识是,这个数据集大约有 650GB。

有三种技术可以定制 AI 模型以整合您的数据:

  • Fine Tuning 微调:这种传统的机器学习技术涉及定制模型并更改其内部权重。然而,即使对于机器学习专家来说,这是一个具有挑战性的过程,而且由于 GPT 等模型的大小,它极其耗费资源。此外,有些模型可能不提供此选项。
  • Prompt Stuffing 提示词填充:一种更实用的替代方案是将您的数据嵌入到提供给模型的提示中。考虑到模型的令牌限制,我们需要具备过滤相关数据的能力,并将过滤出的数据填充到在模型交互的上下文窗口中,这种方法俗称“提示词填充”。Spring AI 库可帮助您基于“提示词填充” 技术,​ 也称为检索增强生成 (RAG)实现解决方案。

prompt-stuffing

  • Function Calling​:此技术允许注册自定义的用户函数,将大型语言模型连接到外部系统的 API。Spring AI​ 大大简化了支持函数调用所需编写的代码 。

检索增强生成(RAG)

一种称为检索增强生成 (RAG) 的技术已经出现,旨在解决为 AI 模型提供额外的知识输入,以辅助模型更好的回答问题。

该方法涉及批处理式的编程模型,其中涉及到:从文档中读取非结构化数据、对其进行转换、然后将其写入矢量数据库。从高层次上讲,这是一个 ETL(提取、转换和加载)管道。矢量数据库则用于 RAG 技术的检索部分。

在将非结构化数据加载到矢量数据库的过程中,最重要的转换之一是将原始文档拆分成较小的部分。将原始文档拆分成较小部分的过程有两个重要步骤:

  1. 将文档拆分成几部分,同时保留内容的语义边界。例如,对于包含段落和表格的文档,应避免在段落或表格中间拆分文档;对于代码,应避免在方法实现的中间拆分代码。
  2. 将文档的各部分进一步拆分成大小仅为 AI 模型令牌 token 限制的一小部分的部分。

RAG 的下一个阶段是处理用户输入。当用户的问题需要由 AI 模型回答时,问题和所有“类似”的文档片段都会被放入发送给 AI 模型的提示中。这就是使用矢量数据库的原因,它非常擅长查找具有一定相似度的“类似”内容。

Spring AI RAG


  •  ETL 管道提供了有关协调从数据源提取数据并将其存储在结构化向量存储中的流程的更多信息,确保在将数据传递给 AI 模型时数据具有最佳的检索格式。

  •  ChatClient - RAG解释了如何使用QuestionAnswerAdvisor Advisor 在您的应用程序中启用 RAG 功能。

函数调用(Function Calling)

大型语言模型 (LLM) 在训练后即被冻结,导致知识陈旧,并且无法访问或修改外部数据。


Function Calling​​机制解决了这些缺点,它允许您注册自己的函数,以将大型语言模型连接到外部系统的 API。这些系统可以为 LLM 提供实时数据并代表它们执行数据处理操作。

Spring AI 大大简化了您需要编写的代码以支持函数调用。它为您处理函数调用对话。您可以将函数作为提供,@Bean然后在提示选项中提供该函数的 bean 名称以激活该函数。此外,您可以在单个提示中定义和引用多个函数。

Spring AI Function Calling

  • (1)执行聊天请求并发送函数定义信息。后者提供namedescription例如,解释模型何时应调用该函数)和input parameters(例如,函数的输入参数模式)。
  • (2)当模型决定调用该函数时,它将使用输入参数调用该函数,并将输出返回给模型。
  • (3)Spring AI 为您处理此对话。它将函数调用分派给适当的函数,并将结果返回给模型。
  • (4)模型可以执行多个函数调用来检索所需的所有信息。
  • (5)一旦获取了所有需要的信息,模型就会生成响应。

​请关注函数调用文档以获取有关如何在不同 AI 模型中使用此功能的更多信息。

七、评估人工智能的回答(Evaluation)

有效评估人工智能系统回答的正确性,对于确保最终应用程序的准确性和实用性非常重要,一些新兴技术使得预训练模型本身能够用于此目的。

Evaluation 评估过程涉及分析响应是否符合用户的意图、与查询的上下文强相关,一些指标如相关性、连贯性和事实正确性等都被用于衡量 AI 生成的响应的质量。

一种方法是把用户的请求、模型的响应一同作为输入给到模型服务,对比模型给的响应或回答是否与提供的响应数据一致。

此外,利用矢量数据库(Vector Database)中存储的信息作为补充数据可以增强评估过程,有助于确定响应的相关性。

相关文章:

Spring AI 框架使用的核心概念

一、模型(Model) AI 模型是旨在处理和生成信息的算法,通常模仿人类的认知功能。通过从大型数据集中学习模式和见解,这些模型可以做出预测、文本、图像或其他输出,从而增强各个行业的各种应用。 AI 模型有很多种&…...

二叉树路径相关算法题|带权路径长度WPL|最长路径长度|直径长度|到叶节点路径|深度|到某节点的路径非递归(C)

带权路径长度WPL 二叉树的带权路径长度(WPL)是二叉树所有叶节点的带权路径长度之和,给定一棵二叉树T,采用二叉链表存储,节点结构为 其中叶节点的weight域保存该节点的非负权值,设root为指向T的根节点的指针,设计求W…...

前端:JavaScript (学习笔记)【2】

目录 一,数组的使用 1,数组的创建 [ ] 2,数组的元素和长度 3,数组的遍历方式 4,数组的常用方法 二,JavaScript中的对象 1,常用对象 (1)String和java中的Stri…...

[面试]-golang基础面试题总结

文章目录 panic 和 recover**注意事项**使用 pprof、trace 和 race 进行性能调试。**Go Module**:Go中new和make的区别 Channel什么是 Channel 的方向性?如何对 Channel 进行方向限制?Channel 的缓冲区大小对于 Channel 和 Goroutine 的通信有…...

【案例】泛微.齐业成助力北京中远大昌汽车实现数电票全流程管理

中远大昌统一发票共享平台上线三个多月以来,实现: 5000份 60000元 发票开具 成本节约 客户简介及需求分析 北京中远大昌汽车服务有限公司(以下简称“中远大昌”)成立于2002年,是中远海运集团所属香远(北…...

微软安全文章合集

说明:文章来自微软很多年前旧帖,有用的部分拿去,没用的就忽略吧,另外提一句,微软会清理文章,很多我收藏的帖子都无法查看了,所以收藏的最好办法是,用word复制粘贴下来保存到云盘&…...

自然语言处理: RAG优化之Embedding模型选型重要依据:mteb/leaderboard榜

本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor git地址:https://github.com/opendatalab/MinerU 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 写在前面: 笔者更新不易,希望走过路…...

鸿蒙主流路由详解

鸿蒙主流路由详解 Navigation Navigation更适合于一次开发,多端部署,也是官方主流推荐的一种路由控制方式,但是,使用起来入侵耦合度高,所以,一般会使用HMRouter,这也是官方主流推荐的路由 Navigation官网地址 个人源码地址 路由跳转 第一步-定义路由栈 Provide(PageInfo) pag…...

C#构建一个简单的循环神经网络,模拟对话

循环神经网络(Recurrent Neural Network, RNN)是一种用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN具有内部记忆能力,可以捕捉到序列中元素之间的依赖关系。这种特性使得RNN在自然语言处理、语音识别、时间序列预…...

Linux上安装单机版Kibana6.8.1

1. 下载安装包 kibana-6.8.1-linux-x86_64.tar.gz 链接:https://pan.baidu.com/s/1b4kION9wFXIVHuWDn2J-Aw 提取码:rdrc 2. Kibana启动不能使用root用户,使用ES里创建的elsearch用户,进行赋权: chown -R elsearch:els…...

短视频矩阵矩阵,矩阵号策略

随着数字媒体的迅猛发展,短视频平台已经成为企业和个人品牌推广的核心渠道。在这一背景下,短视频矩阵营销策略应运而生,它通过高效整合和管理多个短视频账号,实现资源的最优配置和营销效果的最大化。本文旨在深入探讨短视频矩阵的…...

Rust 力扣 - 2266. 统计打字方案数

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 这题可以先求按了多少次相同连续的按钮,所有的连续相同按钮表示的方案数的乘积就是本题答案 我们的关键问题就转换成了按n个连续相同按钮表示的方案数 设f(i)表示按i个连续相同按钮表示的方案数 如…...

【大数据技术与开发实训】携程景点在线评论分析

景点在线评论分析 题目要求实验目标技术实现数据采集获取所有相关景点页面的 URL获取所有相关景点对应的 poiId 及其他有用信息通过 poiId 获取所有景点的全部评论数据采集结果 数据预处理景点信息的数据预处理查看数据基本信息缺失值处理 用户评论的数据处理缺失值处理分词、去…...

46.坑王驾到第十期:vscode 无法使用 tsc 命令

点赞收藏加关注,你也能住大别墅! 一、问题重现 上一篇帖子记录了我昨天在mac上安装typescript及调试的过程。今天打开vscode准备开干的时候,发现tsc命令又无法使用了,然后按照昨天的方法重新安装调试后又能用了,但是关…...

postman 调用 下载接口(download)使用默认名称(response.txt 或随机名称)

官网地址:https://www.postman.com 介绍 Postman 是一款流行的 API 开发和测试工具,用于发送 HTTP 请求、测试接口、调试服务器响应以及进行 API 文档管理。它支持多种请求类型(如 GET、POST、PUT、DELETE 等),并且功能…...

单片机_简单AI模型训练与部署__从0到0.9

IDE: CLion MCU: STM32F407VET6 一、导向 以求知为导向,从问题到寻求问题解决的方法,以兴趣驱动学习。 虽从0,但不到1,剩下的那一小步将由你迈出。本篇主要目的是体验完整的一次简单AI模型部署流程&#x…...

对撞双指针(七)三数之和

15. 三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组…...

【Ubuntu24.04】服务部署(虚拟机)

目录 0 背景1 安装虚拟机1.1 下载虚拟机软件1.2 安装虚拟机软件1.2 安装虚拟电脑 2 配置虚拟机2.1 配置虚拟机网络及运行初始化脚本2.2 配置服务运行环境2.2.1 安装并配置JDK172.2.2 安装并配置MySQL8.42.2.3 安装并配置Redis 3 部署服务4 总结 0 背景 你的服务部署在了你的计算…...

timm库加载的模型可视化

在深度学习中,模型的可视化有助于了解模型的结构和层级关系。以下是几种方式来可视化使用 timm 库加载的模型: 打印模型结构 torch.nn.Module 的子类(包括 timm 的模型)可以通过 print() 查看其结构:import timm# 加…...

服务限流、降级、熔断-SpringCloud

本文所使用的组件:Nacos(服务中心和注册中心)、OpenFeign(服务调用)、Sentinel(限流、降级)、Hystrix(熔断) 项目结构: service-provider:提供服…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如&#xff1a…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...